Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTVD Structured version   Visualization version   GIF version

Theorem onfrALTVD 43265
Description: Virtual deduction proof of onfrALT 42923. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALT 42923 is onfrALTVD 43265 without virtual deductions and was automatically derived from onfrALTVD 43265.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
2:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
3:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    (¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
4:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    ((𝑎𝑥) = ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
5:: ((𝑎𝑥) = ∅ ∨ ¬ (𝑎𝑥) = ∅)
6:5,4,3: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    𝑦𝑎(𝑎𝑦) = ∅   )
7:6: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑥𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
8:7: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑥(𝑥 𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
9:8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (∃𝑥𝑥 𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
10:: (𝑎 ≠ ∅ ↔ ∃𝑥𝑥𝑎)
11:9,10: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
12:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 On ∧ 𝑎 ≠ ∅)   )
13:12: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎    )
14:13,11: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑦 𝑎(𝑎𝑦) = ∅   )
15:14: ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
16:15: 𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 𝑎(𝑎𝑦) = ∅)
qed:16: E Fr On
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTVD E Fr On

Proof of Theorem onfrALTVD
Dummy variables 𝑥 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 42948 . . . . . 6 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   )
2 simpr 486 . . . . . 6 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ≠ ∅)
31, 2e1a 43001 . . . . 5 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 ≠ ∅   )
4 exmid 894 . . . . . . . . . 10 ((𝑎𝑥) = ∅ ∨ ¬ (𝑎𝑥) = ∅)
5 onfrALTlem1VD 43264 . . . . . . . . . . 11 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
65in2an 42982 . . . . . . . . . 10 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶   ((𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
7 onfrALTlem2VD 43263 . . . . . . . . . . 11 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
87in2an 42982 . . . . . . . . . 10 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶   (¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
9 pm2.61 191 . . . . . . . . . . 11 (((𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ((¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
109a1i 11 . . . . . . . . . 10 (((𝑎𝑥) = ∅ ∨ ¬ (𝑎𝑥) = ∅) → (((𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ((¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)))
114, 6, 8, 10e022 43015 . . . . . . . . 9 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
1211in2 42979 . . . . . . . 8 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
1312gen11 42990 . . . . . . 7 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑥(𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
14 19.23v 1946 . . . . . . . 8 (∀𝑥(𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅) ↔ (∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅))
1514biimpi 215 . . . . . . 7 (∀𝑥(𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅) → (∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅))
1613, 15e1a 43001 . . . . . 6 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
17 n0 4310 . . . . . 6 (𝑎 ≠ ∅ ↔ ∃𝑥 𝑥𝑎)
18 imbi1 348 . . . . . . 7 ((𝑎 ≠ ∅ ↔ ∃𝑥 𝑥𝑎) → ((𝑎 ≠ ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) ↔ (∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅)))
1918biimprcd 250 . . . . . 6 ((∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ((𝑎 ≠ ∅ ↔ ∃𝑥 𝑥𝑎) → (𝑎 ≠ ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)))
2016, 17, 19e10 43068 . . . . 5 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ≠ ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
21 pm2.27 42 . . . . 5 (𝑎 ≠ ∅ → ((𝑎 ≠ ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
223, 20, 21e11 43062 . . . 4 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
2322in1 42945 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
2423ax-gen 1798 . 2 𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
25 dfepfr 5622 . . 3 ( E Fr On ↔ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
2625biimpri 227 . 2 (∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅) → E Fr On)
2724, 26e0a 43146 1 E Fr On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  wal 1540   = wceq 1542  wex 1782  wcel 2107  wne 2940  wrex 3070  cin 3913  wss 3914  c0 4286   E cep 5540   Fr wfr 5589  Oncon0 6321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-13 2371  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-tr 5227  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-ord 6324  df-on 6325  df-vd1 42944  df-vd2 42952  df-vd3 42964
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator