Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTVD Structured version   Visualization version   GIF version

Theorem onfrALTVD 39876
Description: Virtual deduction proof of onfrALT 39524. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALT 39524 is onfrALTVD 39876 without virtual deductions and was automatically derived from onfrALTVD 39876.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
2:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
3:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    (¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
4:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    ((𝑎𝑥) = ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
5:: ((𝑎𝑥) = ∅ ∨ ¬ (𝑎𝑥) = ∅)
6:5,4,3: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    𝑦𝑎(𝑎𝑦) = ∅   )
7:6: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑥𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
8:7: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑥(𝑥 𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
9:8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (∃𝑥𝑥 𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
10:: (𝑎 ≠ ∅ ↔ ∃𝑥𝑥𝑎)
11:9,10: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
12:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 On ∧ 𝑎 ≠ ∅)   )
13:12: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎    )
14:13,11: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑦 𝑎(𝑎𝑦) = ∅   )
15:14: ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
16:15: 𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 𝑎(𝑎𝑦) = ∅)
qed:16: E Fr On
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTVD E Fr On

Proof of Theorem onfrALTVD
Dummy variables 𝑥 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 39549 . . . . . 6 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   )
2 simpr 478 . . . . . 6 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ≠ ∅)
31, 2e1a 39611 . . . . 5 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 ≠ ∅   )
4 exmid 919 . . . . . . . . . 10 ((𝑎𝑥) = ∅ ∨ ¬ (𝑎𝑥) = ∅)
5 onfrALTlem1VD 39875 . . . . . . . . . . 11 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
65in2an 39592 . . . . . . . . . 10 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶   ((𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
7 onfrALTlem2VD 39874 . . . . . . . . . . 11 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
87in2an 39592 . . . . . . . . . 10 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶   (¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
9 pm2.61 184 . . . . . . . . . . 11 (((𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ((¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
109a1i 11 . . . . . . . . . 10 (((𝑎𝑥) = ∅ ∨ ¬ (𝑎𝑥) = ∅) → (((𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ((¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)))
114, 6, 8, 10e022 39625 . . . . . . . . 9 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
1211in2 39589 . . . . . . . 8 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
1312gen11 39600 . . . . . . 7 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑥(𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
14 19.23v 2038 . . . . . . . 8 (∀𝑥(𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅) ↔ (∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅))
1514biimpi 208 . . . . . . 7 (∀𝑥(𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅) → (∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅))
1613, 15e1a 39611 . . . . . 6 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
17 n0 4130 . . . . . 6 (𝑎 ≠ ∅ ↔ ∃𝑥 𝑥𝑎)
18 imbi1 339 . . . . . . 7 ((𝑎 ≠ ∅ ↔ ∃𝑥 𝑥𝑎) → ((𝑎 ≠ ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) ↔ (∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅)))
1918biimprcd 242 . . . . . 6 ((∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ((𝑎 ≠ ∅ ↔ ∃𝑥 𝑥𝑎) → (𝑎 ≠ ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)))
2016, 17, 19e10 39678 . . . . 5 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ≠ ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)   )
21 pm2.27 42 . . . . 5 (𝑎 ≠ ∅ → ((𝑎 ≠ ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
223, 20, 21e11 39672 . . . 4 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
2322in1 39546 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
2423ax-gen 1891 . 2 𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
25 dfepfr 5296 . . 3 ( E Fr On ↔ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
2625biimpri 220 . 2 (∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅) → E Fr On)
2724, 26e0a 39757 1 E Fr On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  wo 874  wal 1651   = wceq 1653  wex 1875  wcel 2157  wne 2970  wrex 3089  cin 3767  wss 3768  c0 4114   E cep 5223   Fr wfr 5267  Oncon0 5940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-sep 4974  ax-nul 4982  ax-pr 5096
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-nul 4115  df-if 4277  df-sn 4368  df-pr 4370  df-op 4374  df-uni 4628  df-br 4843  df-opab 4905  df-tr 4945  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-ord 5943  df-on 5944  df-vd1 39545  df-vd2 39553  df-vd3 39565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator