Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrneq Structured version   Visualization version   GIF version

Theorem ltrneq 40150
Description: The equality of two translations is determined by their equality at atoms not under co-atom 𝑊. (Contributed by NM, 20-Jun-2013.)
Hypotheses
Ref Expression
ltrne.l = (le‘𝐾)
ltrne.a 𝐴 = (Atoms‘𝐾)
ltrne.h 𝐻 = (LHyp‘𝐾)
ltrne.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrneq (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)) ↔ 𝐹 = 𝐺))
Distinct variable groups:   𝐴,𝑝   𝐹,𝑝   𝐺,𝑝   𝐻,𝑝   𝐾,𝑝   𝑇,𝑝   𝑊,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem ltrneq
StepHypRef Expression
1 simp11 1204 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴𝑝 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1205 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴𝑝 𝑊) → 𝐹𝑇)
3 eqid 2730 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
4 ltrne.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
53, 4atbase 39289 . . . . . . . . 9 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
653ad2ant2 1134 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴𝑝 𝑊) → 𝑝 ∈ (Base‘𝐾))
7 simp3 1138 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴𝑝 𝑊) → 𝑝 𝑊)
8 ltrne.l . . . . . . . . 9 = (le‘𝐾)
9 ltrne.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
10 ltrne.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
113, 8, 9, 10ltrnval1 40135 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑝 𝑊)) → (𝐹𝑝) = 𝑝)
121, 2, 6, 7, 11syl112anc 1376 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴𝑝 𝑊) → (𝐹𝑝) = 𝑝)
13 simp13 1206 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴𝑝 𝑊) → 𝐺𝑇)
143, 8, 9, 10ltrnval1 40135 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑝 𝑊)) → (𝐺𝑝) = 𝑝)
151, 13, 6, 7, 14syl112anc 1376 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴𝑝 𝑊) → (𝐺𝑝) = 𝑝)
1612, 15eqtr4d 2768 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴𝑝 𝑊) → (𝐹𝑝) = (𝐺𝑝))
17163expia 1121 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴) → (𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)))
18 pm2.61 192 . . . . 5 ((𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)) → ((¬ 𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)) → (𝐹𝑝) = (𝐺𝑝)))
1917, 18syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)) → (𝐹𝑝) = (𝐺𝑝)))
20 re1tbw2 1746 . . . 4 ((𝐹𝑝) = (𝐺𝑝) → (¬ 𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)))
2119, 20impbid1 225 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝐹𝑝) = (𝐺𝑝)))
2221ralbidva 3155 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)) ↔ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝)))
234, 9, 10ltrneq2 40149 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ↔ 𝐹 = 𝐺))
2422, 23bitrd 279 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5110  cfv 6514  Basecbs 17186  lecple 17234  Atomscatm 39263  HLchlt 39350  LHypclh 39985  LTrncltrn 40102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106
This theorem is referenced by:  cdlemj2  40823
  Copyright terms: Public domain W3C validator