Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrneq Structured version   Visualization version   GIF version

Theorem ltrneq 39749
Description: The equality of two translations is determined by their equality at atoms not under co-atom 𝑊. (Contributed by NM, 20-Jun-2013.)
Hypotheses
Ref Expression
ltrne.l = (le‘𝐾)
ltrne.a 𝐴 = (Atoms‘𝐾)
ltrne.h 𝐻 = (LHyp‘𝐾)
ltrne.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrneq (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)) ↔ 𝐹 = 𝐺))
Distinct variable groups:   𝐴,𝑝   𝐹,𝑝   𝐺,𝑝   𝐻,𝑝   𝐾,𝑝   𝑇,𝑝   𝑊,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem ltrneq
StepHypRef Expression
1 simp11 1200 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴𝑝 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1201 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴𝑝 𝑊) → 𝐹𝑇)
3 eqid 2725 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
4 ltrne.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
53, 4atbase 38888 . . . . . . . . 9 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
653ad2ant2 1131 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴𝑝 𝑊) → 𝑝 ∈ (Base‘𝐾))
7 simp3 1135 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴𝑝 𝑊) → 𝑝 𝑊)
8 ltrne.l . . . . . . . . 9 = (le‘𝐾)
9 ltrne.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
10 ltrne.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
113, 8, 9, 10ltrnval1 39734 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑝 𝑊)) → (𝐹𝑝) = 𝑝)
121, 2, 6, 7, 11syl112anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴𝑝 𝑊) → (𝐹𝑝) = 𝑝)
13 simp13 1202 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴𝑝 𝑊) → 𝐺𝑇)
143, 8, 9, 10ltrnval1 39734 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑝 𝑊)) → (𝐺𝑝) = 𝑝)
151, 13, 6, 7, 14syl112anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴𝑝 𝑊) → (𝐺𝑝) = 𝑝)
1612, 15eqtr4d 2768 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴𝑝 𝑊) → (𝐹𝑝) = (𝐺𝑝))
17163expia 1118 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴) → (𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)))
18 pm2.61 191 . . . . 5 ((𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)) → ((¬ 𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)) → (𝐹𝑝) = (𝐺𝑝)))
1917, 18syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)) → (𝐹𝑝) = (𝐺𝑝)))
20 re1tbw2 1740 . . . 4 ((𝐹𝑝) = (𝐺𝑝) → (¬ 𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)))
2119, 20impbid1 224 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)) ↔ (𝐹𝑝) = (𝐺𝑝)))
2221ralbidva 3165 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)) ↔ ∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝)))
234, 9, 10ltrneq2 39748 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴 (𝐹𝑝) = (𝐺𝑝) ↔ 𝐹 = 𝐺))
2422, 23bitrd 278 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = (𝐺𝑝)) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050   class class class wbr 5149  cfv 6549  Basecbs 17183  lecple 17243  Atomscatm 38862  HLchlt 38949  LHypclh 39584  LTrncltrn 39701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-map 8847  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-lat 18427  df-clat 18494  df-oposet 38775  df-ol 38777  df-oml 38778  df-covers 38865  df-ats 38866  df-atl 38897  df-cvlat 38921  df-hlat 38950  df-lhyp 39588  df-laut 39589  df-ldil 39704  df-ltrn 39705
This theorem is referenced by:  cdlemj2  40422
  Copyright terms: Public domain W3C validator