Proof of Theorem ltrneq
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp11 1204 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | simp12 1205 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊) → 𝐹 ∈ 𝑇) | 
| 3 |  | eqid 2737 | . . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 4 |  | ltrne.a | . . . . . . . . . 10
⊢ 𝐴 = (Atoms‘𝐾) | 
| 5 | 3, 4 | atbase 39290 | . . . . . . . . 9
⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) | 
| 6 | 5 | 3ad2ant2 1135 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊) → 𝑝 ∈ (Base‘𝐾)) | 
| 7 |  | simp3 1139 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊) → 𝑝 ≤ 𝑊) | 
| 8 |  | ltrne.l | . . . . . . . . 9
⊢  ≤ =
(le‘𝐾) | 
| 9 |  | ltrne.h | . . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) | 
| 10 |  | ltrne.t | . . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 11 | 3, 8, 9, 10 | ltrnval1 40136 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑝 ≤ 𝑊)) → (𝐹‘𝑝) = 𝑝) | 
| 12 | 1, 2, 6, 7, 11 | syl112anc 1376 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊) → (𝐹‘𝑝) = 𝑝) | 
| 13 |  | simp13 1206 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊) → 𝐺 ∈ 𝑇) | 
| 14 | 3, 8, 9, 10 | ltrnval1 40136 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑝 ≤ 𝑊)) → (𝐺‘𝑝) = 𝑝) | 
| 15 | 1, 13, 6, 7, 14 | syl112anc 1376 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊) → (𝐺‘𝑝) = 𝑝) | 
| 16 | 12, 15 | eqtr4d 2780 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴 ∧ 𝑝 ≤ 𝑊) → (𝐹‘𝑝) = (𝐺‘𝑝)) | 
| 17 | 16 | 3expia 1122 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴) → (𝑝 ≤ 𝑊 → (𝐹‘𝑝) = (𝐺‘𝑝))) | 
| 18 |  | pm2.61 192 | . . . . 5
⊢ ((𝑝 ≤ 𝑊 → (𝐹‘𝑝) = (𝐺‘𝑝)) → ((¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = (𝐺‘𝑝)) → (𝐹‘𝑝) = (𝐺‘𝑝))) | 
| 19 | 17, 18 | syl 17 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴) → ((¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = (𝐺‘𝑝)) → (𝐹‘𝑝) = (𝐺‘𝑝))) | 
| 20 |  | re1tbw2 1746 | . . . 4
⊢ ((𝐹‘𝑝) = (𝐺‘𝑝) → (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = (𝐺‘𝑝))) | 
| 21 | 19, 20 | impbid1 225 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴) → ((¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = (𝐺‘𝑝)) ↔ (𝐹‘𝑝) = (𝐺‘𝑝))) | 
| 22 | 21 | ralbidva 3176 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = (𝐺‘𝑝)) ↔ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝))) | 
| 23 | 4, 9, 10 | ltrneq2 40150 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = (𝐺‘𝑝) ↔ 𝐹 = 𝐺)) | 
| 24 | 22, 23 | bitrd 279 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = (𝐺‘𝑝)) ↔ 𝐹 = 𝐺)) |