Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnid Structured version   Visualization version   GIF version

Theorem ltrnid 37138
Description: A lattice translation is the identity function iff all atoms not under the fiducial co-atom 𝑊 are equal to their values. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
ltrneq.b 𝐵 = (Base‘𝐾)
ltrneq.l = (le‘𝐾)
ltrneq.a 𝐴 = (Atoms‘𝐾)
ltrneq.h 𝐻 = (LHyp‘𝐾)
ltrneq.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐹,𝑝   𝐻,𝑝   𝐾,𝑝   𝑇,𝑝   𝑊,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem ltrnid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp-4l 779 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → 𝐾 ∈ HL)
2 ltrneq.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
3 eqid 2825 . . . . . . . . 9 (LAut‘𝐾) = (LAut‘𝐾)
4 ltrneq.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnlaut 37126 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
65ad2antrr 722 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → 𝐹 ∈ (LAut‘𝐾))
7 simpr 485 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → 𝑥𝐵)
8 simplll 771 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 simpllr 772 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → 𝐹𝑇)
10 ltrneq.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝐾)
11 ltrneq.a . . . . . . . . . . . . . . 15 𝐴 = (Atoms‘𝐾)
1210, 11atbase 36292 . . . . . . . . . . . . . 14 (𝑝𝐴𝑝𝐵)
1312ad2antlr 723 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → 𝑝𝐵)
14 simpr 485 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → 𝑝 𝑊)
15 ltrneq.l . . . . . . . . . . . . . 14 = (le‘𝐾)
1610, 15, 2, 4ltrnval1 37137 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑝𝐵𝑝 𝑊)) → (𝐹𝑝) = 𝑝)
178, 9, 13, 14, 16syl112anc 1368 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) ∧ 𝑝 𝑊) → (𝐹𝑝) = 𝑝)
1817ex 413 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (𝑝 𝑊 → (𝐹𝑝) = 𝑝))
19 pm2.61 193 . . . . . . . . . . 11 ((𝑝 𝑊 → (𝐹𝑝) = 𝑝) → ((¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝))
2018, 19syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝))
2120ralimdva 3181 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) → ∀𝑝𝐴 (𝐹𝑝) = 𝑝))
2221imp 407 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → ∀𝑝𝐴 (𝐹𝑝) = 𝑝)
2322adantr 481 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → ∀𝑝𝐴 (𝐹𝑝) = 𝑝)
2410, 11, 3lauteq 37098 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾) ∧ 𝑥𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → (𝐹𝑥) = 𝑥)
251, 6, 7, 23, 24syl31anc 1367 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → (𝐹𝑥) = 𝑥)
26 fvresi 6930 . . . . . . 7 (𝑥𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥)
2726adantl 482 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → (( I ↾ 𝐵)‘𝑥) = 𝑥)
2825, 27eqtr4d 2863 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) ∧ 𝑥𝐵) → (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥))
2928ralrimiva 3186 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → ∀𝑥𝐵 (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥))
3010, 2, 4ltrn1o 37127 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
3130adantr 481 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → 𝐹:𝐵1-1-onto𝐵)
32 f1ofn 6612 . . . . . 6 (𝐹:𝐵1-1-onto𝐵𝐹 Fn 𝐵)
3331, 32syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → 𝐹 Fn 𝐵)
34 fnresi 6472 . . . . 5 ( I ↾ 𝐵) Fn 𝐵
35 eqfnfv 6797 . . . . 5 ((𝐹 Fn 𝐵 ∧ ( I ↾ 𝐵) Fn 𝐵) → (𝐹 = ( I ↾ 𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥)))
3633, 34, 35sylancl 586 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → (𝐹 = ( I ↾ 𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (( I ↾ 𝐵)‘𝑥)))
3729, 36mpbird 258 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)) → 𝐹 = ( I ↾ 𝐵))
3837ex 413 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) → 𝐹 = ( I ↾ 𝐵)))
3912adantl 482 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → 𝑝𝐵)
40 fvresi 6930 . . . . . 6 (𝑝𝐵 → (( I ↾ 𝐵)‘𝑝) = 𝑝)
4139, 40syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (( I ↾ 𝐵)‘𝑝) = 𝑝)
42 fveq1 6665 . . . . . 6 (𝐹 = ( I ↾ 𝐵) → (𝐹𝑝) = (( I ↾ 𝐵)‘𝑝))
4342eqeq1d 2827 . . . . 5 (𝐹 = ( I ↾ 𝐵) → ((𝐹𝑝) = 𝑝 ↔ (( I ↾ 𝐵)‘𝑝) = 𝑝))
4441, 43syl5ibrcom 248 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (𝐹 = ( I ↾ 𝐵) → (𝐹𝑝) = 𝑝))
4544a1dd 50 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑝𝐴) → (𝐹 = ( I ↾ 𝐵) → (¬ 𝑝 𝑊 → (𝐹𝑝) = 𝑝)))
4645ralrimdva 3193 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹 = ( I ↾ 𝐵) → ∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝)))
4738, 46impbid 213 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∀𝑝𝐴𝑝 𝑊 → (𝐹𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wral 3142   class class class wbr 5062   I cid 5457  cres 5555   Fn wfn 6346  1-1-ontowf1o 6350  cfv 6351  Basecbs 16475  lecple 16564  Atomscatm 36266  HLchlt 36353  LHypclh 36987  LAutclaut 36988  LTrncltrn 37104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-map 8401  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36179  df-ol 36181  df-oml 36182  df-covers 36269  df-ats 36270  df-atl 36301  df-cvlat 36325  df-hlat 36354  df-laut 36992  df-ldil 37107  df-ltrn 37108
This theorem is referenced by:  ltrnnid  37139
  Copyright terms: Public domain W3C validator