| Step | Hyp | Ref
| Expression |
| 1 | | simp-4l 783 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) ∧ 𝑥 ∈ 𝐵) → 𝐾 ∈ HL) |
| 2 | | ltrneq.h |
. . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) |
| 3 | | eqid 2737 |
. . . . . . . . 9
⊢
(LAut‘𝐾) =
(LAut‘𝐾) |
| 4 | | ltrneq.t |
. . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 5 | 2, 3, 4 | ltrnlaut 40125 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (LAut‘𝐾)) |
| 6 | 5 | ad2antrr 726 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) ∧ 𝑥 ∈ 𝐵) → 𝐹 ∈ (LAut‘𝐾)) |
| 7 | | simpr 484 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 8 | | simplll 775 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ≤ 𝑊) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 9 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ≤ 𝑊) → 𝐹 ∈ 𝑇) |
| 10 | | ltrneq.b |
. . . . . . . . . . . . . . 15
⊢ 𝐵 = (Base‘𝐾) |
| 11 | | ltrneq.a |
. . . . . . . . . . . . . . 15
⊢ 𝐴 = (Atoms‘𝐾) |
| 12 | 10, 11 | atbase 39290 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵) |
| 13 | 12 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ≤ 𝑊) → 𝑝 ∈ 𝐵) |
| 14 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ≤ 𝑊) → 𝑝 ≤ 𝑊) |
| 15 | | ltrneq.l |
. . . . . . . . . . . . . 14
⊢ ≤ =
(le‘𝐾) |
| 16 | 10, 15, 2, 4 | ltrnval1 40136 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑝 ∈ 𝐵 ∧ 𝑝 ≤ 𝑊)) → (𝐹‘𝑝) = 𝑝) |
| 17 | 8, 9, 13, 14, 16 | syl112anc 1376 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴) ∧ 𝑝 ≤ 𝑊) → (𝐹‘𝑝) = 𝑝) |
| 18 | 17 | ex 412 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴) → (𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) |
| 19 | | pm2.61 192 |
. . . . . . . . . . 11
⊢ ((𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝) → ((¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝) → (𝐹‘𝑝) = 𝑝)) |
| 20 | 18, 19 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴) → ((¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝) → (𝐹‘𝑝) = 𝑝)) |
| 21 | 20 | ralimdva 3167 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝) → ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = 𝑝)) |
| 22 | 21 | imp 406 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) → ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = 𝑝) |
| 23 | 22 | adantr 480 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) ∧ 𝑥 ∈ 𝐵) → ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = 𝑝) |
| 24 | 10, 11, 3 | lauteq 40097 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝐹 ∈ (LAut‘𝐾) ∧ 𝑥 ∈ 𝐵) ∧ ∀𝑝 ∈ 𝐴 (𝐹‘𝑝) = 𝑝) → (𝐹‘𝑥) = 𝑥) |
| 25 | 1, 6, 7, 23, 24 | syl31anc 1375 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) = 𝑥) |
| 26 | | fvresi 7193 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥) |
| 27 | 26 | adantl 481 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) ∧ 𝑥 ∈ 𝐵) → (( I ↾ 𝐵)‘𝑥) = 𝑥) |
| 28 | 25, 27 | eqtr4d 2780 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) = (( I ↾ 𝐵)‘𝑥)) |
| 29 | 28 | ralrimiva 3146 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (( I ↾ 𝐵)‘𝑥)) |
| 30 | 10, 2, 4 | ltrn1o 40126 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
| 31 | 30 | adantr 480 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) → 𝐹:𝐵–1-1-onto→𝐵) |
| 32 | | f1ofn 6849 |
. . . . . 6
⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹 Fn 𝐵) |
| 33 | 31, 32 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) → 𝐹 Fn 𝐵) |
| 34 | | fnresi 6697 |
. . . . 5
⊢ ( I
↾ 𝐵) Fn 𝐵 |
| 35 | | eqfnfv 7051 |
. . . . 5
⊢ ((𝐹 Fn 𝐵 ∧ ( I ↾ 𝐵) Fn 𝐵) → (𝐹 = ( I ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (( I ↾ 𝐵)‘𝑥))) |
| 36 | 33, 34, 35 | sylancl 586 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) → (𝐹 = ( I ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (( I ↾ 𝐵)‘𝑥))) |
| 37 | 29, 36 | mpbird 257 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝)) → 𝐹 = ( I ↾ 𝐵)) |
| 38 | 37 | ex 412 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝) → 𝐹 = ( I ↾ 𝐵))) |
| 39 | 12 | adantl 481 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝐵) |
| 40 | | fvresi 7193 |
. . . . . 6
⊢ (𝑝 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑝) = 𝑝) |
| 41 | 39, 40 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴) → (( I ↾ 𝐵)‘𝑝) = 𝑝) |
| 42 | | fveq1 6905 |
. . . . . 6
⊢ (𝐹 = ( I ↾ 𝐵) → (𝐹‘𝑝) = (( I ↾ 𝐵)‘𝑝)) |
| 43 | 42 | eqeq1d 2739 |
. . . . 5
⊢ (𝐹 = ( I ↾ 𝐵) → ((𝐹‘𝑝) = 𝑝 ↔ (( I ↾ 𝐵)‘𝑝) = 𝑝)) |
| 44 | 41, 43 | syl5ibrcom 247 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴) → (𝐹 = ( I ↾ 𝐵) → (𝐹‘𝑝) = 𝑝)) |
| 45 | 44 | a1dd 50 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑝 ∈ 𝐴) → (𝐹 = ( I ↾ 𝐵) → (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝))) |
| 46 | 45 | ralrimdva 3154 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹 = ( I ↾ 𝐵) → ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝))) |
| 47 | 38, 46 | impbid 212 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → (𝐹‘𝑝) = 𝑝) ↔ 𝐹 = ( I ↾ 𝐵))) |