Proof of Theorem isltrn2N
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ltrnset.l | . . 3
⊢  ≤ =
(le‘𝐾) | 
| 2 |  | ltrnset.j | . . 3
⊢  ∨ =
(join‘𝐾) | 
| 3 |  | ltrnset.m | . . 3
⊢  ∧ =
(meet‘𝐾) | 
| 4 |  | ltrnset.a | . . 3
⊢ 𝐴 = (Atoms‘𝐾) | 
| 5 |  | ltrnset.h | . . 3
⊢ 𝐻 = (LHyp‘𝐾) | 
| 6 |  | ltrnset.d | . . 3
⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | 
| 7 |  | ltrnset.t | . . 3
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 8 | 1, 2, 3, 4, 5, 6, 7 | isltrn 40121 | . 2
⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))))) | 
| 9 |  | 3simpa 1149 | . . . . . 6
⊢ ((¬
𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) → (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) | 
| 10 | 9 | imim1i 63 | . . . . 5
⊢ (((¬
𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) | 
| 11 |  | 3anass 1095 | . . . . . . . . 9
⊢ ((𝑝 ≠ 𝑞 ∧ ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) ↔ (𝑝 ≠ 𝑞 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊))) | 
| 12 |  | 3anrot 1100 | . . . . . . . . 9
⊢ ((𝑝 ≠ 𝑞 ∧ ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) ↔ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞)) | 
| 13 |  | df-ne 2941 | . . . . . . . . . 10
⊢ (𝑝 ≠ 𝑞 ↔ ¬ 𝑝 = 𝑞) | 
| 14 | 13 | anbi1i 624 | . . . . . . . . 9
⊢ ((𝑝 ≠ 𝑞 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) ↔ (¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊))) | 
| 15 | 11, 12, 14 | 3bitr3i 301 | . . . . . . . 8
⊢ ((¬
𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) ↔ (¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊))) | 
| 16 | 15 | imbi1i 349 | . . . . . . 7
⊢ (((¬
𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) ↔ ((¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) | 
| 17 |  | impexp 450 | . . . . . . 7
⊢ (((¬
𝑝 = 𝑞 ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊)) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) ↔ (¬ 𝑝 = 𝑞 → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) | 
| 18 | 16, 17 | bitri 275 | . . . . . 6
⊢ (((¬
𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) ↔ (¬ 𝑝 = 𝑞 → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) | 
| 19 |  | id 22 | . . . . . . . . . 10
⊢ (𝑝 = 𝑞 → 𝑝 = 𝑞) | 
| 20 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑝 = 𝑞 → (𝐹‘𝑝) = (𝐹‘𝑞)) | 
| 21 | 19, 20 | oveq12d 7449 | . . . . . . . . 9
⊢ (𝑝 = 𝑞 → (𝑝 ∨ (𝐹‘𝑝)) = (𝑞 ∨ (𝐹‘𝑞))) | 
| 22 | 21 | oveq1d 7446 | . . . . . . . 8
⊢ (𝑝 = 𝑞 → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) | 
| 23 | 22 | a1d 25 | . . . . . . 7
⊢ (𝑝 = 𝑞 → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) | 
| 24 |  | pm2.61 192 | . . . . . . 7
⊢ ((𝑝 = 𝑞 → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) → ((¬ 𝑝 = 𝑞 → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) | 
| 25 | 23, 24 | ax-mp 5 | . . . . . 6
⊢ ((¬
𝑝 = 𝑞 → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) | 
| 26 | 18, 25 | sylbi 217 | . . . . 5
⊢ (((¬
𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) | 
| 27 | 10, 26 | impbii 209 | . . . 4
⊢ (((¬
𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) ↔ ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) | 
| 28 | 27 | 2ralbii 3128 | . . 3
⊢
(∀𝑝 ∈
𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) ↔ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) | 
| 29 | 28 | anbi2i 623 | . 2
⊢ ((𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) | 
| 30 | 8, 29 | bitrdi 287 | 1
⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑝 ≠ 𝑞) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))))) |