Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isltrn2N Structured version   Visualization version   GIF version

Theorem isltrn2N 38134
Description: The predicate "is a lattice translation". Version of isltrn 38133 that considers only different 𝑝 and 𝑞. TODO: Can this eliminate some separate proofs for the 𝑝 = 𝑞 case? (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrnset.l = (le‘𝐾)
ltrnset.j = (join‘𝐾)
ltrnset.m = (meet‘𝐾)
ltrnset.a 𝐴 = (Atoms‘𝐾)
ltrnset.h 𝐻 = (LHyp‘𝐾)
ltrnset.d 𝐷 = ((LDil‘𝐾)‘𝑊)
ltrnset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
isltrn2N ((𝐾𝐵𝑊𝐻) → (𝐹𝑇 ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐾,𝑝,𝑞   𝑊,𝑝,𝑞   𝐹,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑞,𝑝)   𝐷(𝑞,𝑝)   𝑇(𝑞,𝑝)   𝐻(𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)

Proof of Theorem isltrn2N
StepHypRef Expression
1 ltrnset.l . . 3 = (le‘𝐾)
2 ltrnset.j . . 3 = (join‘𝐾)
3 ltrnset.m . . 3 = (meet‘𝐾)
4 ltrnset.a . . 3 𝐴 = (Atoms‘𝐾)
5 ltrnset.h . . 3 𝐻 = (LHyp‘𝐾)
6 ltrnset.d . . 3 𝐷 = ((LDil‘𝐾)‘𝑊)
7 ltrnset.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7isltrn 38133 . 2 ((𝐾𝐵𝑊𝐻) → (𝐹𝑇 ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
9 3simpa 1147 . . . . . 6 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊))
109imim1i 63 . . . . 5 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
11 3anass 1094 . . . . . . . . 9 ((𝑝𝑞 ∧ ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ↔ (𝑝𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)))
12 3anrot 1099 . . . . . . . . 9 ((𝑝𝑞 ∧ ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ↔ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞))
13 df-ne 2944 . . . . . . . . . 10 (𝑝𝑞 ↔ ¬ 𝑝 = 𝑞)
1413anbi1i 624 . . . . . . . . 9 ((𝑝𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) ↔ (¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)))
1511, 12, 143bitr3i 301 . . . . . . . 8 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) ↔ (¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)))
1615imbi1i 350 . . . . . . 7 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ((¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
17 impexp 451 . . . . . . 7 (((¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ (¬ 𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
1816, 17bitri 274 . . . . . 6 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ (¬ 𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
19 id 22 . . . . . . . . . 10 (𝑝 = 𝑞𝑝 = 𝑞)
20 fveq2 6774 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝐹𝑝) = (𝐹𝑞))
2119, 20oveq12d 7293 . . . . . . . . 9 (𝑝 = 𝑞 → (𝑝 (𝐹𝑝)) = (𝑞 (𝐹𝑞)))
2221oveq1d 7290 . . . . . . . 8 (𝑝 = 𝑞 → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))
2322a1d 25 . . . . . . 7 (𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
24 pm2.61 191 . . . . . . 7 ((𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) → ((¬ 𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
2523, 24ax-mp 5 . . . . . 6 ((¬ 𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
2618, 25sylbi 216 . . . . 5 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
2710, 26impbii 208 . . . 4 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
28272ralbii 3093 . . 3 (∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
2928anbi2i 623 . 2 ((𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
308, 29bitrdi 287 1 ((𝐾𝐵𝑊𝐻) → (𝐹𝑇 ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064   class class class wbr 5074  cfv 6433  (class class class)co 7275  lecple 16969  joincjn 18029  meetcmee 18030  Atomscatm 37277  LHypclh 37998  LDilcldil 38114  LTrncltrn 38115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-ltrn 38119
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator