Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isltrn2N Structured version   Visualization version   GIF version

Theorem isltrn2N 38583
Description: The predicate "is a lattice translation". Version of isltrn 38582 that considers only different 𝑝 and 𝑞. TODO: Can this eliminate some separate proofs for the 𝑝 = 𝑞 case? (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrnset.l = (le‘𝐾)
ltrnset.j = (join‘𝐾)
ltrnset.m = (meet‘𝐾)
ltrnset.a 𝐴 = (Atoms‘𝐾)
ltrnset.h 𝐻 = (LHyp‘𝐾)
ltrnset.d 𝐷 = ((LDil‘𝐾)‘𝑊)
ltrnset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
isltrn2N ((𝐾𝐵𝑊𝐻) → (𝐹𝑇 ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐾,𝑝,𝑞   𝑊,𝑝,𝑞   𝐹,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑞,𝑝)   𝐷(𝑞,𝑝)   𝑇(𝑞,𝑝)   𝐻(𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)

Proof of Theorem isltrn2N
StepHypRef Expression
1 ltrnset.l . . 3 = (le‘𝐾)
2 ltrnset.j . . 3 = (join‘𝐾)
3 ltrnset.m . . 3 = (meet‘𝐾)
4 ltrnset.a . . 3 𝐴 = (Atoms‘𝐾)
5 ltrnset.h . . 3 𝐻 = (LHyp‘𝐾)
6 ltrnset.d . . 3 𝐷 = ((LDil‘𝐾)‘𝑊)
7 ltrnset.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7isltrn 38582 . 2 ((𝐾𝐵𝑊𝐻) → (𝐹𝑇 ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
9 3simpa 1148 . . . . . 6 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊))
109imim1i 63 . . . . 5 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
11 3anass 1095 . . . . . . . . 9 ((𝑝𝑞 ∧ ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ↔ (𝑝𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)))
12 3anrot 1100 . . . . . . . . 9 ((𝑝𝑞 ∧ ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ↔ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞))
13 df-ne 2944 . . . . . . . . . 10 (𝑝𝑞 ↔ ¬ 𝑝 = 𝑞)
1413anbi1i 624 . . . . . . . . 9 ((𝑝𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) ↔ (¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)))
1511, 12, 143bitr3i 300 . . . . . . . 8 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) ↔ (¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)))
1615imbi1i 349 . . . . . . 7 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ((¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
17 impexp 451 . . . . . . 7 (((¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ (¬ 𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
1816, 17bitri 274 . . . . . 6 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ (¬ 𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
19 id 22 . . . . . . . . . 10 (𝑝 = 𝑞𝑝 = 𝑞)
20 fveq2 6842 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝐹𝑝) = (𝐹𝑞))
2119, 20oveq12d 7375 . . . . . . . . 9 (𝑝 = 𝑞 → (𝑝 (𝐹𝑝)) = (𝑞 (𝐹𝑞)))
2221oveq1d 7372 . . . . . . . 8 (𝑝 = 𝑞 → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))
2322a1d 25 . . . . . . 7 (𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
24 pm2.61 191 . . . . . . 7 ((𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) → ((¬ 𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
2523, 24ax-mp 5 . . . . . 6 ((¬ 𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
2618, 25sylbi 216 . . . . 5 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
2710, 26impbii 208 . . . 4 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
28272ralbii 3127 . . 3 (∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
2928anbi2i 623 . 2 ((𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
308, 29bitrdi 286 1 ((𝐾𝐵𝑊𝐻) → (𝐹𝑇 ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064   class class class wbr 5105  cfv 6496  (class class class)co 7357  lecple 17140  joincjn 18200  meetcmee 18201  Atomscatm 37725  LHypclh 38447  LDilcldil 38563  LTrncltrn 38564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-ltrn 38568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator