Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isltrn2N Structured version   Visualization version   GIF version

Theorem isltrn2N 40139
Description: The predicate "is a lattice translation". Version of isltrn 40138 that considers only different 𝑝 and 𝑞. TODO: Can this eliminate some separate proofs for the 𝑝 = 𝑞 case? (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrnset.l = (le‘𝐾)
ltrnset.j = (join‘𝐾)
ltrnset.m = (meet‘𝐾)
ltrnset.a 𝐴 = (Atoms‘𝐾)
ltrnset.h 𝐻 = (LHyp‘𝐾)
ltrnset.d 𝐷 = ((LDil‘𝐾)‘𝑊)
ltrnset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
isltrn2N ((𝐾𝐵𝑊𝐻) → (𝐹𝑇 ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐾,𝑝,𝑞   𝑊,𝑝,𝑞   𝐹,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑞,𝑝)   𝐷(𝑞,𝑝)   𝑇(𝑞,𝑝)   𝐻(𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)

Proof of Theorem isltrn2N
StepHypRef Expression
1 ltrnset.l . . 3 = (le‘𝐾)
2 ltrnset.j . . 3 = (join‘𝐾)
3 ltrnset.m . . 3 = (meet‘𝐾)
4 ltrnset.a . . 3 𝐴 = (Atoms‘𝐾)
5 ltrnset.h . . 3 𝐻 = (LHyp‘𝐾)
6 ltrnset.d . . 3 𝐷 = ((LDil‘𝐾)‘𝑊)
7 ltrnset.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7isltrn 40138 . 2 ((𝐾𝐵𝑊𝐻) → (𝐹𝑇 ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
9 3simpa 1148 . . . . . 6 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊))
109imim1i 63 . . . . 5 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
11 3anass 1094 . . . . . . . . 9 ((𝑝𝑞 ∧ ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ↔ (𝑝𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)))
12 3anrot 1099 . . . . . . . . 9 ((𝑝𝑞 ∧ ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ↔ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞))
13 df-ne 2933 . . . . . . . . . 10 (𝑝𝑞 ↔ ¬ 𝑝 = 𝑞)
1413anbi1i 624 . . . . . . . . 9 ((𝑝𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) ↔ (¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)))
1511, 12, 143bitr3i 301 . . . . . . . 8 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) ↔ (¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)))
1615imbi1i 349 . . . . . . 7 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ((¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
17 impexp 450 . . . . . . 7 (((¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ (¬ 𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
1816, 17bitri 275 . . . . . 6 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ (¬ 𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
19 id 22 . . . . . . . . . 10 (𝑝 = 𝑞𝑝 = 𝑞)
20 fveq2 6876 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝐹𝑝) = (𝐹𝑞))
2119, 20oveq12d 7423 . . . . . . . . 9 (𝑝 = 𝑞 → (𝑝 (𝐹𝑝)) = (𝑞 (𝐹𝑞)))
2221oveq1d 7420 . . . . . . . 8 (𝑝 = 𝑞 → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))
2322a1d 25 . . . . . . 7 (𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
24 pm2.61 192 . . . . . . 7 ((𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) → ((¬ 𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
2523, 24ax-mp 5 . . . . . 6 ((¬ 𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
2618, 25sylbi 217 . . . . 5 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
2710, 26impbii 209 . . . 4 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
28272ralbii 3115 . . 3 (∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
2928anbi2i 623 . 2 ((𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
308, 29bitrdi 287 1 ((𝐾𝐵𝑊𝐻) → (𝐹𝑇 ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051   class class class wbr 5119  cfv 6531  (class class class)co 7405  lecple 17278  joincjn 18323  meetcmee 18324  Atomscatm 39281  LHypclh 40003  LDilcldil 40119  LTrncltrn 40120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-ltrn 40124
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator