Proof of Theorem bnj1109
Step | Hyp | Ref
| Expression |
1 | | bnj1109.2 |
. . . . . . 7
⊢ ((𝐴 = 𝐵 ∧ 𝜑) → 𝜓) |
2 | 1 | ex 412 |
. . . . . 6
⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
3 | 2 | a1i 11 |
. . . . 5
⊢ ((𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) → (𝐴 = 𝐵 → (𝜑 → 𝜓))) |
4 | 3 | ax-gen 1793 |
. . . 4
⊢
∀𝑥((𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) → (𝐴 = 𝐵 → (𝜑 → 𝜓))) |
5 | | bnj1109.1 |
. . . . 5
⊢
∃𝑥((𝐴 ≠ 𝐵 ∧ 𝜑) → 𝜓) |
6 | | impexp 450 |
. . . . . 6
⊢ (((𝐴 ≠ 𝐵 ∧ 𝜑) → 𝜓) ↔ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓))) |
7 | 6 | exbii 1846 |
. . . . 5
⊢
(∃𝑥((𝐴 ≠ 𝐵 ∧ 𝜑) → 𝜓) ↔ ∃𝑥(𝐴 ≠ 𝐵 → (𝜑 → 𝜓))) |
8 | 5, 7 | mpbi 229 |
. . . 4
⊢
∃𝑥(𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
9 | | exintr 1891 |
. . . 4
⊢
(∀𝑥((𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) → (𝐴 = 𝐵 → (𝜑 → 𝜓))) → (∃𝑥(𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) → ∃𝑥((𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) ∧ (𝐴 = 𝐵 → (𝜑 → 𝜓))))) |
10 | 4, 8, 9 | mp2 9 |
. . 3
⊢
∃𝑥((𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) ∧ (𝐴 = 𝐵 → (𝜑 → 𝜓))) |
11 | | exancom 1860 |
. . 3
⊢
(∃𝑥((𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) ∧ (𝐴 = 𝐵 → (𝜑 → 𝜓))) ↔ ∃𝑥((𝐴 = 𝐵 → (𝜑 → 𝜓)) ∧ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)))) |
12 | 10, 11 | mpbi 229 |
. 2
⊢
∃𝑥((𝐴 = 𝐵 → (𝜑 → 𝜓)) ∧ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓))) |
13 | | df-ne 2939 |
. . . 4
⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) |
14 | 13 | imbi1i 349 |
. . 3
⊢ ((𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) ↔ (¬ 𝐴 = 𝐵 → (𝜑 → 𝜓))) |
15 | | pm2.61 191 |
. . . 4
⊢ ((𝐴 = 𝐵 → (𝜑 → 𝜓)) → ((¬ 𝐴 = 𝐵 → (𝜑 → 𝜓)) → (𝜑 → 𝜓))) |
16 | 15 | imp 406 |
. . 3
⊢ (((𝐴 = 𝐵 → (𝜑 → 𝜓)) ∧ (¬ 𝐴 = 𝐵 → (𝜑 → 𝜓))) → (𝜑 → 𝜓)) |
17 | 14, 16 | sylan2b 593 |
. 2
⊢ (((𝐴 = 𝐵 → (𝜑 → 𝜓)) ∧ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓))) → (𝜑 → 𝜓)) |
18 | 12, 17 | bnj101 32730 |
1
⊢
∃𝑥(𝜑 → 𝜓) |