Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALT Structured version   Visualization version   GIF version

Theorem onfrALT 40422
Description: The epsilon relation is foundational on the class of ordinal numbers. onfrALT 40422 is an alternate proof of onfr 6105. onfrALTVD 40764 is the Virtual Deduction proof from which onfrALT 40422 is derived. The Virtual Deduction proof mirrors the working proof of onfr 6105 which is the main part of the proof of Theorem 7.12 of the first edition of TakeutiZaring. The proof of the corresponding Proposition 7.12 of [TakeutiZaring] p. 38 (second edition) does not contain the working proof equivalent of onfrALTVD 40764. This theorem does not rely on the Axiom of Regularity. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALT E Fr On

Proof of Theorem onfrALT
Dummy variables 𝑥 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 5428 . 2 ( E Fr On ↔ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
2 simpr 485 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ≠ ∅)
3 n0 4230 . . . 4 (𝑎 ≠ ∅ ↔ ∃𝑥 𝑥𝑎)
4 onfrALTlem1 40421 . . . . . . 7 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
54expd 416 . . . . . 6 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥𝑎 → ((𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)))
6 onfrALTlem2 40419 . . . . . . 7 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
76expd 416 . . . . . 6 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥𝑎 → (¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)))
8 pm2.61 193 . . . . . 6 (((𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ((¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
95, 7, 8syl6c 70 . . . . 5 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅))
109exlimdv 1911 . . . 4 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅))
113, 10syl5bi 243 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑎 ≠ ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅))
122, 11mpd 15 . 2 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
131, 12mpgbir 1781 1 E Fr On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1522  wex 1761  wne 2984  wrex 3106  cin 3858  wss 3859  c0 4211   E cep 5352   Fr wfr 5399  Oncon0 6066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-tr 5064  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-ord 6069  df-on 6070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator