Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALT Structured version   Visualization version   GIF version

Theorem onfrALT 42923
Description: The membership relation is foundational on the class of ordinal numbers. onfrALT 42923 is an alternate proof of onfr 6360. onfrALTVD 43265 is the Virtual Deduction proof from which onfrALT 42923 is derived. The Virtual Deduction proof mirrors the working proof of onfr 6360 which is the main part of the proof of Theorem 7.12 of the first edition of TakeutiZaring. The proof of the corresponding Proposition 7.12 of [TakeutiZaring] p. 38 (second edition) does not contain the working proof equivalent of onfrALTVD 43265. This theorem does not rely on the Axiom of Regularity. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALT E Fr On

Proof of Theorem onfrALT
Dummy variables 𝑥 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 5622 . 2 ( E Fr On ↔ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
2 simpr 486 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ≠ ∅)
3 n0 4310 . . . 4 (𝑎 ≠ ∅ ↔ ∃𝑥 𝑥𝑎)
4 onfrALTlem1 42922 . . . . . . 7 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
54expd 417 . . . . . 6 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥𝑎 → ((𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)))
6 onfrALTlem2 42920 . . . . . . 7 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
76expd 417 . . . . . 6 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥𝑎 → (¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅)))
8 pm2.61 191 . . . . . 6 (((𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ((¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
95, 7, 8syl6c 70 . . . . 5 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅))
109exlimdv 1937 . . . 4 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (∃𝑥 𝑥𝑎 → ∃𝑦𝑎 (𝑎𝑦) = ∅))
113, 10biimtrid 241 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑎 ≠ ∅ → ∃𝑦𝑎 (𝑎𝑦) = ∅))
122, 11mpd 15 . 2 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
131, 12mpgbir 1802 1 E Fr On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wex 1782  wne 2940  wrex 3070  cin 3913  wss 3914  c0 4286   E cep 5540   Fr wfr 5589  Oncon0 6321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-13 2371  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-tr 5227  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-ord 6324  df-on 6325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator