Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > onfrALT | Structured version Visualization version GIF version |
Description: The membership relation is foundational on the class of ordinal numbers. onfrALT 41842 is an alternate proof of onfr 6252. onfrALTVD 42184 is the Virtual Deduction proof from which onfrALT 41842 is derived. The Virtual Deduction proof mirrors the working proof of onfr 6252 which is the main part of the proof of Theorem 7.12 of the first edition of TakeutiZaring. The proof of the corresponding Proposition 7.12 of [TakeutiZaring] p. 38 (second edition) does not contain the working proof equivalent of onfrALTVD 42184. This theorem does not rely on the Axiom of Regularity. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
onfrALT | ⊢ E Fr On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfepfr 5536 | . 2 ⊢ ( E Fr On ↔ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
2 | simpr 488 | . . 3 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ≠ ∅) | |
3 | n0 4261 | . . . 4 ⊢ (𝑎 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑎) | |
4 | onfrALTlem1 41841 | . . . . . . 7 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
5 | 4 | expd 419 | . . . . . 6 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥 ∈ 𝑎 → ((𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅))) |
6 | onfrALTlem2 41839 | . . . . . . 7 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
7 | 6 | expd 419 | . . . . . 6 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥 ∈ 𝑎 → (¬ (𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅))) |
8 | pm2.61 195 | . . . . . 6 ⊢ (((𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) → ((¬ (𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
9 | 5, 7, 8 | syl6c 70 | . . . . 5 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) |
10 | 9 | exlimdv 1941 | . . . 4 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (∃𝑥 𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) |
11 | 3, 10 | syl5bi 245 | . . 3 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑎 ≠ ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) |
12 | 2, 11 | mpd 15 | . 2 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) |
13 | 1, 12 | mpgbir 1807 | 1 ⊢ E Fr On |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∃wex 1787 ≠ wne 2940 ∃wrex 3062 ∩ cin 3865 ⊆ wss 3866 ∅c0 4237 E cep 5459 Fr wfr 5506 Oncon0 6213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-13 2371 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-tr 5162 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-ord 6216 df-on 6217 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |