| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onfrALT | Structured version Visualization version GIF version | ||
| Description: The membership relation is foundational on the class of ordinal numbers. onfrALT 44523 is an alternate proof of onfr 6350. onfrALTVD 44864 is the Virtual Deduction proof from which onfrALT 44523 is derived. The Virtual Deduction proof mirrors the working proof of onfr 6350 which is the main part of the proof of Theorem 7.12 of the first edition of TakeutiZaring. The proof of the corresponding Proposition 7.12 of [TakeutiZaring] p. 38 (second edition) does not contain the working proof equivalent of onfrALTVD 44864. This theorem does not rely on the Axiom of Regularity. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| onfrALT | ⊢ E Fr On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfepfr 5607 | . 2 ⊢ ( E Fr On ↔ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ≠ ∅) | |
| 3 | n0 4306 | . . . 4 ⊢ (𝑎 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑎) | |
| 4 | onfrALTlem1 44522 | . . . . . . 7 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
| 5 | 4 | expd 415 | . . . . . 6 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥 ∈ 𝑎 → ((𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅))) |
| 6 | onfrALTlem2 44520 | . . . . . . 7 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
| 7 | 6 | expd 415 | . . . . . 6 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥 ∈ 𝑎 → (¬ (𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅))) |
| 8 | pm2.61 192 | . . . . . 6 ⊢ (((𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) → ((¬ (𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
| 9 | 5, 7, 8 | syl6c 70 | . . . . 5 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) |
| 10 | 9 | exlimdv 1933 | . . . 4 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (∃𝑥 𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) |
| 11 | 3, 10 | biimtrid 242 | . . 3 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑎 ≠ ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) |
| 12 | 2, 11 | mpd 15 | . 2 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) |
| 13 | 1, 12 | mpgbir 1799 | 1 ⊢ E Fr On |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ≠ wne 2925 ∃wrex 3053 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 E cep 5522 Fr wfr 5573 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2370 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |