| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onfrALT | Structured version Visualization version GIF version | ||
| Description: The membership relation is foundational on the class of ordinal numbers. onfrALT 44574 is an alternate proof of onfr 6391. onfrALTVD 44915 is the Virtual Deduction proof from which onfrALT 44574 is derived. The Virtual Deduction proof mirrors the working proof of onfr 6391 which is the main part of the proof of Theorem 7.12 of the first edition of TakeutiZaring. The proof of the corresponding Proposition 7.12 of [TakeutiZaring] p. 38 (second edition) does not contain the working proof equivalent of onfrALTVD 44915. This theorem does not rely on the Axiom of Regularity. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| onfrALT | ⊢ E Fr On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfepfr 5638 | . 2 ⊢ ( E Fr On ↔ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ≠ ∅) | |
| 3 | n0 4328 | . . . 4 ⊢ (𝑎 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑎) | |
| 4 | onfrALTlem1 44573 | . . . . . . 7 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
| 5 | 4 | expd 415 | . . . . . 6 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥 ∈ 𝑎 → ((𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅))) |
| 6 | onfrALTlem2 44571 | . . . . . . 7 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
| 7 | 6 | expd 415 | . . . . . 6 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥 ∈ 𝑎 → (¬ (𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅))) |
| 8 | pm2.61 192 | . . . . . 6 ⊢ (((𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) → ((¬ (𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
| 9 | 5, 7, 8 | syl6c 70 | . . . . 5 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) |
| 10 | 9 | exlimdv 1933 | . . . 4 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (∃𝑥 𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) |
| 11 | 3, 10 | biimtrid 242 | . . 3 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑎 ≠ ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) |
| 12 | 2, 11 | mpd 15 | . 2 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) |
| 13 | 1, 12 | mpgbir 1799 | 1 ⊢ E Fr On |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ≠ wne 2932 ∃wrex 3060 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 E cep 5552 Fr wfr 5603 Oncon0 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2376 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |