Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > onfrALT | Structured version Visualization version GIF version |
Description: The membership relation is foundational on the class of ordinal numbers. onfrALT 42058 is an alternate proof of onfr 6290. onfrALTVD 42400 is the Virtual Deduction proof from which onfrALT 42058 is derived. The Virtual Deduction proof mirrors the working proof of onfr 6290 which is the main part of the proof of Theorem 7.12 of the first edition of TakeutiZaring. The proof of the corresponding Proposition 7.12 of [TakeutiZaring] p. 38 (second edition) does not contain the working proof equivalent of onfrALTVD 42400. This theorem does not rely on the Axiom of Regularity. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
onfrALT | ⊢ E Fr On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfepfr 5565 | . 2 ⊢ ( E Fr On ↔ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
2 | simpr 484 | . . 3 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ≠ ∅) | |
3 | n0 4277 | . . . 4 ⊢ (𝑎 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑎) | |
4 | onfrALTlem1 42057 | . . . . . . 7 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
5 | 4 | expd 415 | . . . . . 6 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥 ∈ 𝑎 → ((𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅))) |
6 | onfrALTlem2 42055 | . . . . . . 7 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
7 | 6 | expd 415 | . . . . . 6 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥 ∈ 𝑎 → (¬ (𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅))) |
8 | pm2.61 191 | . . . . . 6 ⊢ (((𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) → ((¬ (𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
9 | 5, 7, 8 | syl6c 70 | . . . . 5 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) |
10 | 9 | exlimdv 1937 | . . . 4 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (∃𝑥 𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) |
11 | 3, 10 | syl5bi 241 | . . 3 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑎 ≠ ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) |
12 | 2, 11 | mpd 15 | . 2 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) |
13 | 1, 12 | mpgbir 1803 | 1 ⊢ E Fr On |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 ≠ wne 2942 ∃wrex 3064 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 E cep 5485 Fr wfr 5532 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |