Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > onfrALT | Structured version Visualization version GIF version |
Description: The membership relation is foundational on the class of ordinal numbers. onfrALT 42122 is an alternate proof of onfr 6302. onfrALTVD 42464 is the Virtual Deduction proof from which onfrALT 42122 is derived. The Virtual Deduction proof mirrors the working proof of onfr 6302 which is the main part of the proof of Theorem 7.12 of the first edition of TakeutiZaring. The proof of the corresponding Proposition 7.12 of [TakeutiZaring] p. 38 (second edition) does not contain the working proof equivalent of onfrALTVD 42464. This theorem does not rely on the Axiom of Regularity. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
onfrALT | ⊢ E Fr On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfepfr 5573 | . 2 ⊢ ( E Fr On ↔ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
2 | simpr 484 | . . 3 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ≠ ∅) | |
3 | n0 4285 | . . . 4 ⊢ (𝑎 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑎) | |
4 | onfrALTlem1 42121 | . . . . . . 7 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
5 | 4 | expd 415 | . . . . . 6 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥 ∈ 𝑎 → ((𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅))) |
6 | onfrALTlem2 42119 | . . . . . . 7 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
7 | 6 | expd 415 | . . . . . 6 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥 ∈ 𝑎 → (¬ (𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅))) |
8 | pm2.61 191 | . . . . . 6 ⊢ (((𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) → ((¬ (𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) | |
9 | 5, 7, 8 | syl6c 70 | . . . . 5 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) |
10 | 9 | exlimdv 1939 | . . . 4 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (∃𝑥 𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) |
11 | 3, 10 | syl5bi 241 | . . 3 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → (𝑎 ≠ ∅ → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) |
12 | 2, 11 | mpd 15 | . 2 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) |
13 | 1, 12 | mpgbir 1805 | 1 ⊢ E Fr On |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1785 ≠ wne 2944 ∃wrex 3066 ∩ cin 3890 ⊆ wss 3891 ∅c0 4261 E cep 5493 Fr wfr 5540 Oncon0 6263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-13 2373 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-tr 5196 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-ord 6266 df-on 6267 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |