Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.74 | Structured version Visualization version GIF version |
Description: Theorem *2.74 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
pm2.74 | ⊢ ((𝜓 → 𝜑) → (((𝜑 ∨ 𝜓) ∨ 𝜒) → (𝜑 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orel2 891 | . . 3 ⊢ (¬ 𝜓 → ((𝜑 ∨ 𝜓) → 𝜑)) | |
2 | ax-1 6 | . . 3 ⊢ (𝜑 → ((𝜑 ∨ 𝜓) → 𝜑)) | |
3 | 1, 2 | ja 189 | . 2 ⊢ ((𝜓 → 𝜑) → ((𝜑 ∨ 𝜓) → 𝜑)) |
4 | 3 | orim1d 966 | 1 ⊢ ((𝜓 → 𝜑) → (((𝜑 ∨ 𝜓) ∨ 𝜒) → (𝜑 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |