Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orim1d | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
Ref | Expression |
---|---|
orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orim1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | orim12d 963 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 |
This theorem is referenced by: pm2.38 967 pm2.8 971 pm2.73 972 pm2.74 973 pm2.82 974 moeq3 3627 unss1 4085 ordtri2or2 6263 gchor 10077 relin01 11192 icombl 24254 ioombl 24255 coltr 26530 frgrregorufrg 28200 cycpmco2 30916 fmlasuc 32854 satffunlem1lem2 32871 satffunlem2lem2 32874 naim1 34117 onsucconni 34165 dnibndlem13 34209 mblfinlem2 35365 leat3 36861 meetat2 36863 paddss1 37383 |
Copyright terms: Public domain | W3C validator |