MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim1d Structured version   Visualization version   GIF version

Theorem orim1d 967
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim1d (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))

Proof of Theorem orim1d
StepHypRef Expression
1 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
2 idd 24 . 2 (𝜑 → (𝜃𝜃))
31, 2orim12d 966 1 (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  pm2.38  970  pm2.8  974  pm2.73  975  pm2.74  976  pm2.82  977  moeq3  3683  unss1  4148  ordtri2or2  6433  gchor  10580  relin01  11702  icombl  25465  ioombl  25466  coltr  28574  frgrregorufrg  30255  cycpmco2  33090  fmlasuc  35373  satffunlem1lem2  35390  satffunlem2lem2  35393  naim1  36377  onsucconni  36425  dnibndlem13  36478  mblfinlem2  37652  leat3  39288  meetat2  39290  paddss1  39811  onov0suclim  43263  dflim5  43318  ordsssucim  43391
  Copyright terms: Public domain W3C validator