MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim1d Structured version   Visualization version   GIF version

Theorem orim1d 963
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim1d (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))

Proof of Theorem orim1d
StepHypRef Expression
1 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
2 idd 24 . 2 (𝜑 → (𝜃𝜃))
31, 2orim12d 962 1 (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845
This theorem is referenced by:  pm2.38  966  pm2.8  970  pm2.73  971  pm2.74  972  pm2.82  973  moeq3  3647  unss1  4113  ordtri2or2  6362  gchor  10383  relin01  11499  icombl  24728  ioombl  24729  coltr  27008  frgrregorufrg  28690  cycpmco2  31400  fmlasuc  33348  satffunlem1lem2  33365  satffunlem2lem2  33368  naim1  34578  onsucconni  34626  dnibndlem13  34670  mblfinlem2  35815  leat3  37309  meetat2  37311  paddss1  37831
  Copyright terms: Public domain W3C validator