| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim1d | Structured version Visualization version GIF version | ||
| Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
| Ref | Expression |
|---|---|
| orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| orim1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | orim12d 966 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: pm2.38 970 pm2.8 974 pm2.73 975 pm2.74 976 pm2.82 977 moeq3 3671 unss1 4135 ordtri2or2 6407 gchor 10515 relin01 11638 icombl 25490 ioombl 25491 coltr 28623 frgrregorufrg 30301 cycpmco2 33097 fmlasuc 35418 satffunlem1lem2 35435 satffunlem2lem2 35438 naim1 36422 onsucconni 36470 dnibndlem13 36523 mblfinlem2 37697 leat3 39333 meetat2 39335 paddss1 39855 onov0suclim 43306 dflim5 43361 ordsssucim 43434 |
| Copyright terms: Public domain | W3C validator |