MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim1d Structured version   Visualization version   GIF version

Theorem orim1d 967
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim1d (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))

Proof of Theorem orim1d
StepHypRef Expression
1 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
2 idd 24 . 2 (𝜑 → (𝜃𝜃))
31, 2orim12d 966 1 (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  pm2.38  970  pm2.8  974  pm2.73  975  pm2.74  976  pm2.82  977  moeq3  3667  unss1  4134  ordtri2or2  6412  gchor  10525  relin01  11648  icombl  25493  ioombl  25494  coltr  28626  frgrregorufrg  30308  cycpmco2  33109  fmlasuc  35451  satffunlem1lem2  35468  satffunlem2lem2  35471  naim1  36454  onsucconni  36502  dnibndlem13  36555  mblfinlem2  37718  leat3  39414  meetat2  39416  paddss1  39936  onov0suclim  43391  dflim5  43446  ordsssucim  43519
  Copyright terms: Public domain W3C validator