| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim1d | Structured version Visualization version GIF version | ||
| Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
| Ref | Expression |
|---|---|
| orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| orim1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | orim12d 966 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: pm2.38 970 pm2.8 974 pm2.73 975 pm2.74 976 pm2.82 977 moeq3 3683 unss1 4148 ordtri2or2 6433 gchor 10580 relin01 11702 icombl 25465 ioombl 25466 coltr 28574 frgrregorufrg 30255 cycpmco2 33090 fmlasuc 35373 satffunlem1lem2 35390 satffunlem2lem2 35393 naim1 36377 onsucconni 36425 dnibndlem13 36478 mblfinlem2 37652 leat3 39288 meetat2 39290 paddss1 39811 onov0suclim 43263 dflim5 43318 ordsssucim 43391 |
| Copyright terms: Public domain | W3C validator |