MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim1d Structured version   Visualization version   GIF version

Theorem orim1d 993
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim1d (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))

Proof of Theorem orim1d
StepHypRef Expression
1 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
2 idd 24 . 2 (𝜑 → (𝜃𝜃))
31, 2orim12d 992 1 (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879
This theorem is referenced by:  pm2.38  996  pm2.8  1000  pm2.73  1001  pm2.74  1002  pm2.82  1003  moeq3  3608  unss1  4011  ordtri2or2  6063  gchor  9771  relin01  10883  icombl  23737  ioombl  23738  coltr  25966  frgrregorufrg  27703  naim1  32917  onsucconni  32964  dnibndlem13  33008  mblfinlem2  33990  leat3  35369  meetat2  35371  paddss1  35891
  Copyright terms: Public domain W3C validator