Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orim1d | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
Ref | Expression |
---|---|
orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orim1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | orim12d 962 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: pm2.38 966 pm2.8 970 pm2.73 971 pm2.74 972 pm2.82 973 moeq3 3657 unss1 4125 ordtri2or2 6394 gchor 10476 relin01 11592 icombl 24826 ioombl 24827 coltr 27238 frgrregorufrg 28919 cycpmco2 31628 fmlasuc 33588 satffunlem1lem2 33605 satffunlem2lem2 33608 naim1 34669 onsucconni 34717 dnibndlem13 34761 mblfinlem2 35913 leat3 37555 meetat2 37557 paddss1 38078 dflim5 41303 |
Copyright terms: Public domain | W3C validator |