Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orim1d | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
Ref | Expression |
---|---|
orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orim1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | orim12d 962 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: pm2.38 966 pm2.8 970 pm2.73 971 pm2.74 972 pm2.82 973 moeq3 3647 unss1 4113 ordtri2or2 6362 gchor 10383 relin01 11499 icombl 24728 ioombl 24729 coltr 27008 frgrregorufrg 28690 cycpmco2 31400 fmlasuc 33348 satffunlem1lem2 33365 satffunlem2lem2 33368 naim1 34578 onsucconni 34626 dnibndlem13 34670 mblfinlem2 35815 leat3 37309 meetat2 37311 paddss1 37831 |
Copyright terms: Public domain | W3C validator |