![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orim1d | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
Ref | Expression |
---|---|
orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orim1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | orim12d 992 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 |
This theorem is referenced by: pm2.38 996 pm2.8 1000 pm2.73 1001 pm2.74 1002 pm2.82 1003 moeq3 3608 unss1 4011 ordtri2or2 6063 gchor 9771 relin01 10883 icombl 23737 ioombl 23738 coltr 25966 frgrregorufrg 27703 naim1 32917 onsucconni 32964 dnibndlem13 33008 mblfinlem2 33990 leat3 35369 meetat2 35371 paddss1 35891 |
Copyright terms: Public domain | W3C validator |