| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim1d | Structured version Visualization version GIF version | ||
| Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
| Ref | Expression |
|---|---|
| orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| orim1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | orim12d 966 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: pm2.38 970 pm2.8 974 pm2.73 975 pm2.74 976 pm2.82 977 moeq3 3674 unss1 4138 ordtri2or2 6412 gchor 10540 relin01 11662 icombl 25481 ioombl 25482 coltr 28610 frgrregorufrg 30288 cycpmco2 33088 fmlasuc 35358 satffunlem1lem2 35375 satffunlem2lem2 35378 naim1 36362 onsucconni 36410 dnibndlem13 36463 mblfinlem2 37637 leat3 39273 meetat2 39275 paddss1 39796 onov0suclim 43247 dflim5 43302 ordsssucim 43375 |
| Copyright terms: Public domain | W3C validator |