MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim1d Structured version   Visualization version   GIF version

Theorem orim1d 967
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim1d (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))

Proof of Theorem orim1d
StepHypRef Expression
1 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
2 idd 24 . 2 (𝜑 → (𝜃𝜃))
31, 2orim12d 966 1 (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  pm2.38  970  pm2.8  974  pm2.73  975  pm2.74  976  pm2.82  977  moeq3  3695  unss1  4160  ordtri2or2  6453  gchor  10641  relin01  11761  icombl  25517  ioombl  25518  coltr  28626  frgrregorufrg  30307  cycpmco2  33144  fmlasuc  35408  satffunlem1lem2  35425  satffunlem2lem2  35428  naim1  36407  onsucconni  36455  dnibndlem13  36508  mblfinlem2  37682  leat3  39313  meetat2  39315  paddss1  39836  onov0suclim  43298  dflim5  43353  ordsssucim  43426
  Copyright terms: Public domain W3C validator