| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim1d | Structured version Visualization version GIF version | ||
| Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
| Ref | Expression |
|---|---|
| orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| orim1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | orim12d 966 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: pm2.38 970 pm2.8 974 pm2.73 975 pm2.74 976 pm2.82 977 moeq3 3667 unss1 4134 ordtri2or2 6412 gchor 10525 relin01 11648 icombl 25493 ioombl 25494 coltr 28626 frgrregorufrg 30308 cycpmco2 33109 fmlasuc 35451 satffunlem1lem2 35468 satffunlem2lem2 35471 naim1 36454 onsucconni 36502 dnibndlem13 36555 mblfinlem2 37718 leat3 39414 meetat2 39416 paddss1 39936 onov0suclim 43391 dflim5 43446 ordsssucim 43519 |
| Copyright terms: Public domain | W3C validator |