![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orim1d | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
Ref | Expression |
---|---|
orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orim1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | orim12d 965 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 |
This theorem is referenced by: pm2.38 969 pm2.8 973 pm2.73 974 pm2.74 975 pm2.82 976 moeq3 3734 unss1 4208 ordtri2or2 6494 gchor 10696 relin01 11814 icombl 25618 ioombl 25619 coltr 28673 frgrregorufrg 30358 cycpmco2 33126 fmlasuc 35354 satffunlem1lem2 35371 satffunlem2lem2 35374 naim1 36355 onsucconni 36403 dnibndlem13 36456 mblfinlem2 37618 leat3 39251 meetat2 39253 paddss1 39774 onov0suclim 43236 dflim5 43291 ordsssucim 43364 |
Copyright terms: Public domain | W3C validator |