| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim1d | Structured version Visualization version GIF version | ||
| Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
| Ref | Expression |
|---|---|
| orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| orim1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | orim12d 966 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: pm2.38 970 pm2.8 974 pm2.73 975 pm2.74 976 pm2.82 977 moeq3 3686 unss1 4151 ordtri2or2 6436 gchor 10587 relin01 11709 icombl 25472 ioombl 25473 coltr 28581 frgrregorufrg 30262 cycpmco2 33097 fmlasuc 35380 satffunlem1lem2 35397 satffunlem2lem2 35400 naim1 36384 onsucconni 36432 dnibndlem13 36485 mblfinlem2 37659 leat3 39295 meetat2 39297 paddss1 39818 onov0suclim 43270 dflim5 43325 ordsssucim 43398 |
| Copyright terms: Public domain | W3C validator |