Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orim1d | Structured version Visualization version GIF version |
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.) |
Ref | Expression |
---|---|
orim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orim1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | orim12d 961 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: pm2.38 965 pm2.8 969 pm2.73 970 pm2.74 971 pm2.82 972 moeq3 3642 unss1 4109 ordtri2or2 6347 gchor 10314 relin01 11429 icombl 24633 ioombl 24634 coltr 26912 frgrregorufrg 28591 cycpmco2 31302 fmlasuc 33248 satffunlem1lem2 33265 satffunlem2lem2 33268 naim1 34505 onsucconni 34553 dnibndlem13 34597 mblfinlem2 35742 leat3 37236 meetat2 37238 paddss1 37758 |
Copyright terms: Public domain | W3C validator |