MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim1d Structured version   Visualization version   GIF version

Theorem orim1d 967
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim1d (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))

Proof of Theorem orim1d
StepHypRef Expression
1 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
2 idd 24 . 2 (𝜑 → (𝜃𝜃))
31, 2orim12d 966 1 (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  pm2.38  970  pm2.8  974  pm2.73  975  pm2.74  976  pm2.82  977  moeq3  3674  unss1  4138  ordtri2or2  6412  gchor  10540  relin01  11662  icombl  25481  ioombl  25482  coltr  28610  frgrregorufrg  30288  cycpmco2  33088  fmlasuc  35358  satffunlem1lem2  35375  satffunlem2lem2  35378  naim1  36362  onsucconni  36410  dnibndlem13  36463  mblfinlem2  37637  leat3  39273  meetat2  39275  paddss1  39796  onov0suclim  43247  dflim5  43302  ordsssucim  43375
  Copyright terms: Public domain W3C validator