|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm2.82 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.82 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm2.82 | ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) → (((𝜑 ∨ ¬ 𝜒) ∨ 𝜃) → ((𝜑 ∨ 𝜓) ∨ 𝜃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.24 124 | . . . 4 ⊢ (𝜒 → (¬ 𝜒 → 𝜓)) | |
| 2 | 1 | orim2d 968 | . . 3 ⊢ (𝜒 → ((𝜑 ∨ ¬ 𝜒) → (𝜑 ∨ 𝜓))) | 
| 3 | 2 | jao1i 858 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) → ((𝜑 ∨ ¬ 𝜒) → (𝜑 ∨ 𝜓))) | 
| 4 | 3 | orim1d 967 | 1 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) → (((𝜑 ∨ ¬ 𝜒) ∨ 𝜃) → ((𝜑 ∨ 𝜓) ∨ 𝜃))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |