Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.82 | Structured version Visualization version GIF version |
Description: Theorem *2.82 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.82 | ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) → (((𝜑 ∨ ¬ 𝜒) ∨ 𝜃) → ((𝜑 ∨ 𝜓) ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.24 124 | . . . 4 ⊢ (𝜒 → (¬ 𝜒 → 𝜓)) | |
2 | 1 | orim2d 963 | . . 3 ⊢ (𝜒 → ((𝜑 ∨ ¬ 𝜒) → (𝜑 ∨ 𝜓))) |
3 | 2 | jao1i 854 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) → ((𝜑 ∨ ¬ 𝜒) → (𝜑 ∨ 𝜓))) |
4 | 3 | orim1d 962 | 1 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) → (((𝜑 ∨ ¬ 𝜒) ∨ 𝜃) → ((𝜑 ∨ 𝜓) ∨ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |