| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.53 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.53 | ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | biimpi 216 | 1 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: jaoi 857 mtord 879 orel1 888 orim12dALT 911 biorfriOLD 940 pm2.63 942 pm2.8 974 19.30 1881 19.33b 1885 r19.30 3100 soxp 8108 xnn0nnn0pnf 12528 iccpnfcnv 24842 nnsge1 28235 elpreq 32457 xlt2addrd 32682 xrge0iifcnv 33923 expdioph 43012 pm10.57 44360 vk15.4j 44518 vk15.4jVD 44903 sineq0ALT 44926 xrnmnfpnf 45077 disjinfi 45186 xrlexaddrp 45348 xrred 45361 xrnpnfmnf 45470 sumnnodd 45628 stoweidlem39 46037 dirkercncflem2 46102 fourierdlem101 46205 fourierswlem 46228 salexct 46332 |
| Copyright terms: Public domain | W3C validator |