Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.53 | Structured version Visualization version GIF version |
Description: Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.53 | ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 845 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
2 | 1 | biimpi 219 | 1 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-or 845 |
This theorem is referenced by: jaoi 854 mtord 877 orel1 886 orim12dALT 909 biorfi 936 pm2.63 938 pm2.8 970 19.30 1883 19.33b 1887 r19.30 3259 soxp 7835 xnn0nnn0pnf 12033 iccpnfcnv 23660 elpreq 30415 xlt2addrd 30619 xrge0iifcnv 31418 expdioph 40383 pm10.57 41494 vk15.4j 41653 vk15.4jVD 42039 sineq0ALT 42062 xrnmnfpnf 42138 disjinfi 42236 xrlexaddrp 42398 xrred 42411 xrnpnfmnf 42526 sumnnodd 42684 stoweidlem39 43093 dirkercncflem2 43158 fourierdlem101 43261 fourierswlem 43284 salexct 43386 |
Copyright terms: Public domain | W3C validator |