| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.53 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.53 | ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | biimpi 216 | 1 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: jaoi 857 mtord 879 orel1 888 orim12dALT 911 biorfriOLD 940 pm2.63 942 pm2.8 974 19.30 1882 19.33b 1886 r19.30 3099 soxp 8054 xnn0nnn0pnf 12462 iccpnfcnv 24864 nnsge1 28266 elpreq 32500 xlt2addrd 32734 xrge0iifcnv 33938 expdioph 43056 pm10.57 44404 vk15.4j 44561 vk15.4jVD 44946 sineq0ALT 44969 xrnmnfpnf 45120 disjinfi 45229 xrlexaddrp 45391 xrred 45403 xrnpnfmnf 45512 sumnnodd 45670 stoweidlem39 46077 dirkercncflem2 46142 fourierdlem101 46245 fourierswlem 46268 salexct 46372 |
| Copyright terms: Public domain | W3C validator |