| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.53 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.53 | ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | biimpi 216 | 1 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: jaoi 857 mtord 879 orel1 888 orim12dALT 911 biorfriOLD 940 pm2.63 942 pm2.8 974 19.30 1881 19.33b 1885 r19.30 3101 soxp 8111 xnn0nnn0pnf 12535 iccpnfcnv 24849 nnsge1 28242 elpreq 32464 xlt2addrd 32689 xrge0iifcnv 33930 expdioph 43019 pm10.57 44367 vk15.4j 44525 vk15.4jVD 44910 sineq0ALT 44933 xrnmnfpnf 45084 disjinfi 45193 xrlexaddrp 45355 xrred 45368 xrnpnfmnf 45477 sumnnodd 45635 stoweidlem39 46044 dirkercncflem2 46109 fourierdlem101 46212 fourierswlem 46235 salexct 46339 |
| Copyright terms: Public domain | W3C validator |