| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.53 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.53 | ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | biimpi 216 | 1 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: jaoi 857 mtord 879 orel1 888 orim12dALT 911 biorfriOLD 940 pm2.63 942 pm2.8 974 19.30 1881 19.33b 1885 r19.30 3096 soxp 8069 xnn0nnn0pnf 12489 iccpnfcnv 24859 nnsge1 28259 elpreq 32491 xlt2addrd 32721 xrge0iifcnv 33919 expdioph 43016 pm10.57 44364 vk15.4j 44522 vk15.4jVD 44907 sineq0ALT 44930 xrnmnfpnf 45081 disjinfi 45190 xrlexaddrp 45352 xrred 45364 xrnpnfmnf 45473 sumnnodd 45631 stoweidlem39 46040 dirkercncflem2 46105 fourierdlem101 46208 fourierswlem 46231 salexct 46335 |
| Copyright terms: Public domain | W3C validator |