Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.53 | Structured version Visualization version GIF version |
Description: Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.53 | ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 844 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
2 | 1 | biimpi 215 | 1 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: jaoi 853 mtord 876 orel1 885 orim12dALT 908 biorfi 935 pm2.63 937 pm2.8 969 19.30 1885 19.33b 1889 r19.30 3265 r19.30OLD 3266 soxp 7941 xnn0nnn0pnf 12248 iccpnfcnv 24013 elpreq 30779 xlt2addrd 30983 xrge0iifcnv 31785 expdioph 40761 pm10.57 41878 vk15.4j 42037 vk15.4jVD 42423 sineq0ALT 42446 xrnmnfpnf 42522 disjinfi 42620 xrlexaddrp 42781 xrred 42794 xrnpnfmnf 42905 sumnnodd 43061 stoweidlem39 43470 dirkercncflem2 43535 fourierdlem101 43638 fourierswlem 43661 salexct 43763 |
Copyright terms: Public domain | W3C validator |