| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.53 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.53 | ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | biimpi 216 | 1 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: jaoi 857 mtord 879 orel1 888 orim12dALT 911 biorfriOLD 940 pm2.63 942 pm2.8 974 19.30 1881 19.33b 1885 r19.30 3100 soxp 8085 xnn0nnn0pnf 12504 iccpnfcnv 24818 nnsge1 28211 elpreq 32430 xlt2addrd 32655 xrge0iifcnv 33896 expdioph 42985 pm10.57 44333 vk15.4j 44491 vk15.4jVD 44876 sineq0ALT 44899 xrnmnfpnf 45050 disjinfi 45159 xrlexaddrp 45321 xrred 45334 xrnpnfmnf 45443 sumnnodd 45601 stoweidlem39 46010 dirkercncflem2 46075 fourierdlem101 46178 fourierswlem 46201 salexct 46305 |
| Copyright terms: Public domain | W3C validator |