MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.53 Structured version   Visualization version   GIF version

Theorem pm2.53 851
Description: Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.53 ((𝜑𝜓) → (¬ 𝜑𝜓))

Proof of Theorem pm2.53
StepHypRef Expression
1 df-or 848 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
21biimpi 216 1 ((𝜑𝜓) → (¬ 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  jaoi  857  mtord  879  orel1  888  orim12dALT  911  biorfriOLD  940  pm2.63  942  pm2.8  974  19.30  1881  19.33b  1885  r19.30  3096  soxp  8069  xnn0nnn0pnf  12489  iccpnfcnv  24859  nnsge1  28259  elpreq  32491  xlt2addrd  32721  xrge0iifcnv  33919  expdioph  43016  pm10.57  44364  vk15.4j  44522  vk15.4jVD  44907  sineq0ALT  44930  xrnmnfpnf  45081  disjinfi  45190  xrlexaddrp  45352  xrred  45364  xrnpnfmnf  45473  sumnnodd  45631  stoweidlem39  46040  dirkercncflem2  46105  fourierdlem101  46208  fourierswlem  46231  salexct  46335
  Copyright terms: Public domain W3C validator