| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.53 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.53 | ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | biimpi 216 | 1 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: jaoi 857 mtord 879 orel1 888 orim12dALT 911 biorfriOLD 940 pm2.63 942 pm2.8 974 19.30 1882 19.33b 1886 r19.30 3100 soxp 8068 xnn0nnn0pnf 12478 iccpnfcnv 24889 nnsge1 28291 elpreq 32529 xlt2addrd 32767 xrge0iifcnv 34018 expdioph 43180 pm10.57 44528 vk15.4j 44685 vk15.4jVD 45070 sineq0ALT 45093 xrnmnfpnf 45244 disjinfi 45352 xrlexaddrp 45513 xrred 45525 xrnpnfmnf 45634 sumnnodd 45792 stoweidlem39 46199 dirkercncflem2 46264 fourierdlem101 46367 fourierswlem 46390 salexct 46494 |
| Copyright terms: Public domain | W3C validator |