![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.53 | Structured version Visualization version GIF version |
Description: Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.53 | ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 848 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
2 | 1 | biimpi 216 | 1 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 |
This theorem is referenced by: jaoi 857 mtord 879 orel1 888 orim12dALT 911 biorfriOLD 940 pm2.63 942 pm2.8 974 19.30 1879 19.33b 1883 r19.30 3118 r19.30OLD 3119 soxp 8153 xnn0nnn0pnf 12610 iccpnfcnv 24989 nnsge1 28361 elpreq 32556 xlt2addrd 32769 xrge0iifcnv 33894 expdioph 43012 pm10.57 44367 vk15.4j 44526 vk15.4jVD 44912 sineq0ALT 44935 xrnmnfpnf 45023 disjinfi 45135 xrlexaddrp 45302 xrred 45315 xrnpnfmnf 45425 sumnnodd 45586 stoweidlem39 45995 dirkercncflem2 46060 fourierdlem101 46163 fourierswlem 46186 salexct 46290 |
Copyright terms: Public domain | W3C validator |