| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.53 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.53 | ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 848 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | biimpi 216 | 1 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: jaoi 857 mtord 879 orel1 888 orim12dALT 911 biorfriOLD 940 pm2.63 942 pm2.8 974 19.30 1881 19.33b 1885 r19.30 3107 soxp 8128 xnn0nnn0pnf 12587 iccpnfcnv 24893 nnsge1 28287 elpreq 32509 xlt2addrd 32736 xrge0iifcnv 33964 expdioph 43047 pm10.57 44395 vk15.4j 44553 vk15.4jVD 44938 sineq0ALT 44961 xrnmnfpnf 45107 disjinfi 45216 xrlexaddrp 45379 xrred 45392 xrnpnfmnf 45501 sumnnodd 45659 stoweidlem39 46068 dirkercncflem2 46133 fourierdlem101 46236 fourierswlem 46259 salexct 46363 |
| Copyright terms: Public domain | W3C validator |