![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.53 | Structured version Visualization version GIF version |
Description: Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.53 | ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 847 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
2 | 1 | biimpi 216 | 1 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: jaoi 856 mtord 878 orel1 887 orim12dALT 910 biorfriOLD 939 pm2.63 941 pm2.8 973 19.30 1880 19.33b 1884 r19.30 3126 r19.30OLD 3127 soxp 8170 xnn0nnn0pnf 12638 iccpnfcnv 24994 nnsge1 28364 elpreq 32558 xlt2addrd 32765 xrge0iifcnv 33879 expdioph 42980 pm10.57 44340 vk15.4j 44499 vk15.4jVD 44885 sineq0ALT 44908 xrnmnfpnf 44985 disjinfi 45099 xrlexaddrp 45267 xrred 45280 xrnpnfmnf 45390 sumnnodd 45551 stoweidlem39 45960 dirkercncflem2 46025 fourierdlem101 46128 fourierswlem 46151 salexct 46255 |
Copyright terms: Public domain | W3C validator |