MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.53 Structured version   Visualization version   GIF version

Theorem pm2.53 851
Description: Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.53 ((𝜑𝜓) → (¬ 𝜑𝜓))

Proof of Theorem pm2.53
StepHypRef Expression
1 df-or 848 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
21biimpi 216 1 ((𝜑𝜓) → (¬ 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  jaoi  857  mtord  879  orel1  888  orim12dALT  911  biorfriOLD  940  pm2.63  942  pm2.8  974  19.30  1881  19.33b  1885  r19.30  3107  soxp  8128  xnn0nnn0pnf  12587  iccpnfcnv  24893  nnsge1  28287  elpreq  32509  xlt2addrd  32736  xrge0iifcnv  33964  expdioph  43047  pm10.57  44395  vk15.4j  44553  vk15.4jVD  44938  sineq0ALT  44961  xrnmnfpnf  45107  disjinfi  45216  xrlexaddrp  45379  xrred  45392  xrnpnfmnf  45501  sumnnodd  45659  stoweidlem39  46068  dirkercncflem2  46133  fourierdlem101  46236  fourierswlem  46259  salexct  46363
  Copyright terms: Public domain W3C validator