| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim12d | Structured version Visualization version GIF version | ||
| Description: Disjoin antecedents and consequents in a deduction. See orim12dALT 911 for a proof which does not depend on df-an 396. (Contributed by NM, 10-May-1994.) |
| Ref | Expression |
|---|---|
| orim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| orim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| orim12d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | orim12d.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | pm3.48 965 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜏))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜏))) |
| Copyright terms: Public domain | W3C validator |