Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.39 | Structured version Visualization version GIF version |
Description: Theorem *4.39 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.39 | ⊢ (((𝜑 ↔ 𝜒) ∧ (𝜓 ↔ 𝜃)) → ((𝜑 ∨ 𝜓) ↔ (𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ (((𝜑 ↔ 𝜒) ∧ (𝜓 ↔ 𝜃)) → (𝜑 ↔ 𝜒)) | |
2 | simpr 484 | . 2 ⊢ (((𝜑 ↔ 𝜒) ∧ (𝜓 ↔ 𝜃)) → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | orbi12d 915 | 1 ⊢ (((𝜑 ↔ 𝜒) ∧ (𝜓 ↔ 𝜃)) → ((𝜑 ∨ 𝜓) ↔ (𝜒 ∨ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: 3orbi123VD 42359 |
Copyright terms: Public domain | W3C validator |