Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > animorl | Structured version Visualization version GIF version |
Description: Conjunction implies disjunction with one common formula (1/4). (Contributed by BJ, 4-Oct-2019.) |
Ref | Expression |
---|---|
animorl | ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | orcd 869 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: norassOLD 1536 cadan 1612 rankxplim3 9570 wl-df2-3mintru2 35583 wl-df3-3mintru2 35584 lindslinindsimp1 45686 |
Copyright terms: Public domain | W3C validator |