MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animorl Structured version   Visualization version   GIF version

Theorem animorl 975
Description: Conjunction implies disjunction with one common formula (1/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorl ((𝜑𝜓) → (𝜑𝜒))

Proof of Theorem animorl
StepHypRef Expression
1 simpl 483 . 2 ((𝜑𝜓) → 𝜑)
21orcd 870 1 ((𝜑𝜓) → (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845
This theorem is referenced by:  norassOLD  1536  cadan  1611  rankxplim3  9639  wl-df2-3mintru2  35656  wl-df3-3mintru2  35657  lindslinindsimp1  45798
  Copyright terms: Public domain W3C validator