MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.57 Structured version   Visualization version   GIF version

Theorem pm4.57 988
Description: Theorem *4.57 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.57 (¬ (¬ 𝜑 ∧ ¬ 𝜓) ↔ (𝜑𝜓))

Proof of Theorem pm4.57
StepHypRef Expression
1 oran 987 . 2 ((𝜑𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓))
21bicomi 223 1 (¬ (¬ 𝜑 ∧ ¬ 𝜓) ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845
This theorem is referenced by:  gcdaddmlem  16231  arg-ax  34605  tsbi2  36292
  Copyright terms: Public domain W3C validator