Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.57 | Structured version Visualization version GIF version |
Description: Theorem *4.57 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.57 | ⊢ (¬ (¬ 𝜑 ∧ ¬ 𝜓) ↔ (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oran 987 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓)) | |
2 | 1 | bicomi 223 | 1 ⊢ (¬ (¬ 𝜑 ∧ ¬ 𝜓) ↔ (𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: gcdaddmlem 16231 arg-ax 34605 tsbi2 36292 |
Copyright terms: Public domain | W3C validator |