MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdaddmlem Structured version   Visualization version   GIF version

Theorem gcdaddmlem 16159
Description: Lemma for gcdaddm 16160. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
gcdaddmlem.1 𝐾 ∈ ℤ
gcdaddmlem.2 𝑀 ∈ ℤ
gcdaddmlem.3 𝑁 ∈ ℤ
Assertion
Ref Expression
gcdaddmlem (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))

Proof of Theorem gcdaddmlem
StepHypRef Expression
1 gcdaddmlem.2 . . . . . . 7 𝑀 ∈ ℤ
2 gcdaddmlem.3 . . . . . . 7 𝑁 ∈ ℤ
3 gcddvds 16138 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
41, 2, 3mp2an 688 . . . . . 6 ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)
54simpli 483 . . . . 5 (𝑀 gcd 𝑁) ∥ 𝑀
6 gcdcl 16141 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
71, 2, 6mp2an 688 . . . . . . . . 9 (𝑀 gcd 𝑁) ∈ ℕ0
87nn0zi 12275 . . . . . . . 8 (𝑀 gcd 𝑁) ∈ ℤ
9 gcdaddmlem.1 . . . . . . . . 9 𝐾 ∈ ℤ
10 1z 12280 . . . . . . . . 9 1 ∈ ℤ
11 dvds2ln 15926 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))))
129, 10, 11mpanl12 698 . . . . . . . 8 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))))
138, 1, 2, 12mp3an 1459 . . . . . . 7 (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁)))
144, 13ax-mp 5 . . . . . 6 (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))
15 zcn 12254 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
162, 15ax-mp 5 . . . . . . . 8 𝑁 ∈ ℂ
1716mulid2i 10911 . . . . . . 7 (1 · 𝑁) = 𝑁
1817oveq2i 7266 . . . . . 6 ((𝐾 · 𝑀) + (1 · 𝑁)) = ((𝐾 · 𝑀) + 𝑁)
1914, 18breqtri 5095 . . . . 5 (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)
20 zmulcl 12299 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
219, 1, 20mp2an 688 . . . . . . 7 (𝐾 · 𝑀) ∈ ℤ
22 zaddcl 12290 . . . . . . 7 (((𝐾 · 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) ∈ ℤ)
2321, 2, 22mp2an 688 . . . . . 6 ((𝐾 · 𝑀) + 𝑁) ∈ ℤ
24 dvdslegcd 16139 . . . . . . 7 ((((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
2524ex 412 . . . . . 6 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))))
268, 1, 23, 25mp3an 1459 . . . . 5 (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
275, 19, 26mp2ani 694 . . . 4 (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
28 gcddvds 16138 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)))
291, 23, 28mp2an 688 . . . . . 6 ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁))
3029simpli 483 . . . . 5 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀
31 gcdcl 16141 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℕ0)
321, 23, 31mp2an 688 . . . . . . . . 9 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℕ0
3332nn0zi 12275 . . . . . . . 8 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ
34 znegcl 12285 . . . . . . . . . 10 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
359, 34ax-mp 5 . . . . . . . . 9 -𝐾 ∈ ℤ
36 dvds2ln 15926 . . . . . . . . 9 (((-𝐾 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ)) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))))
3735, 10, 36mpanl12 698 . . . . . . . 8 (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))))
3833, 1, 23, 37mp3an 1459 . . . . . . 7 (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))))
3929, 38ax-mp 5 . . . . . 6 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))
40 zcn 12254 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
419, 40ax-mp 5 . . . . . . . . 9 𝐾 ∈ ℂ
42 zcn 12254 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
431, 42ax-mp 5 . . . . . . . . 9 𝑀 ∈ ℂ
4441, 43mulneg1i 11351 . . . . . . . 8 (-𝐾 · 𝑀) = -(𝐾 · 𝑀)
45 zcn 12254 . . . . . . . . . 10 (((𝐾 · 𝑀) + 𝑁) ∈ ℤ → ((𝐾 · 𝑀) + 𝑁) ∈ ℂ)
4623, 45ax-mp 5 . . . . . . . . 9 ((𝐾 · 𝑀) + 𝑁) ∈ ℂ
4746mulid2i 10911 . . . . . . . 8 (1 · ((𝐾 · 𝑀) + 𝑁)) = ((𝐾 · 𝑀) + 𝑁)
4844, 47oveq12i 7267 . . . . . . 7 ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))) = (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁))
4941, 43mulcli 10913 . . . . . . . . . 10 (𝐾 · 𝑀) ∈ ℂ
5049negcli 11219 . . . . . . . . . 10 -(𝐾 · 𝑀) ∈ ℂ
5149negidi 11220 . . . . . . . . . 10 ((𝐾 · 𝑀) + -(𝐾 · 𝑀)) = 0
5249, 50, 51addcomli 11097 . . . . . . . . 9 (-(𝐾 · 𝑀) + (𝐾 · 𝑀)) = 0
5352oveq1i 7265 . . . . . . . 8 ((-(𝐾 · 𝑀) + (𝐾 · 𝑀)) + 𝑁) = (0 + 𝑁)
5450, 49, 16addassi 10916 . . . . . . . 8 ((-(𝐾 · 𝑀) + (𝐾 · 𝑀)) + 𝑁) = (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁))
5516addid2i 11093 . . . . . . . 8 (0 + 𝑁) = 𝑁
5653, 54, 553eqtr3i 2774 . . . . . . 7 (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁)) = 𝑁
5748, 56eqtri 2766 . . . . . 6 ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))) = 𝑁
5839, 57breqtri 5095 . . . . 5 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁
59 dvdslegcd 16139 . . . . . . 7 ((((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
6059ex 412 . . . . . 6 (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))))
6133, 1, 2, 60mp3an 1459 . . . . 5 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
6230, 58, 61mp2ani 694 . . . 4 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))
6327, 62anim12i 612 . . 3 ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
648zrei 12255 . . . 4 (𝑀 gcd 𝑁) ∈ ℝ
6533zrei 12255 . . . 4 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℝ
6664, 65letri3i 11021 . . 3 ((𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ↔ ((𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
6763, 66sylibr 233 . 2 ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
68 pm4.57 987 . . 3 (¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ↔ ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∨ (𝑀 = 0 ∧ 𝑁 = 0)))
69 oveq2 7263 . . . . . . . . . 10 (𝑀 = 0 → (𝐾 · 𝑀) = (𝐾 · 0))
7041mul01i 11095 . . . . . . . . . 10 (𝐾 · 0) = 0
7169, 70eqtrdi 2795 . . . . . . . . 9 (𝑀 = 0 → (𝐾 · 𝑀) = 0)
7271oveq1d 7270 . . . . . . . 8 (𝑀 = 0 → ((𝐾 · 𝑀) + 𝑁) = (0 + 𝑁))
7372, 55eqtrdi 2795 . . . . . . 7 (𝑀 = 0 → ((𝐾 · 𝑀) + 𝑁) = 𝑁)
7473eqeq1d 2740 . . . . . 6 (𝑀 = 0 → (((𝐾 · 𝑀) + 𝑁) = 0 ↔ 𝑁 = 0))
7574pm5.32i 574 . . . . 5 ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ↔ (𝑀 = 0 ∧ 𝑁 = 0))
76 oveq12 7264 . . . . . 6 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (0 gcd 0))
77 oveq12 7264 . . . . . . 7 ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (0 gcd 0))
7875, 77sylbir 234 . . . . . 6 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (0 gcd 0))
7976, 78eqtr4d 2781 . . . . 5 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
8075, 79sylbi 216 . . . 4 ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
8180, 79jaoi 853 . . 3 (((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∨ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
8268, 81sylbi 216 . 2 (¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
8367, 82pm2.61i 182 1 (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cle 10941  -cneg 11136  0cn0 12163  cz 12249  cdvds 15891   gcd cgcd 16129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130
This theorem is referenced by:  gcdaddm  16160
  Copyright terms: Public domain W3C validator