MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdaddmlem Structured version   Visualization version   GIF version

Theorem gcdaddmlem 15960
Description: Lemma for gcdaddm 15961. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
gcdaddmlem.1 𝐾 ∈ ℤ
gcdaddmlem.2 𝑀 ∈ ℤ
gcdaddmlem.3 𝑁 ∈ ℤ
Assertion
Ref Expression
gcdaddmlem (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))

Proof of Theorem gcdaddmlem
StepHypRef Expression
1 gcdaddmlem.2 . . . . . . 7 𝑀 ∈ ℤ
2 gcdaddmlem.3 . . . . . . 7 𝑁 ∈ ℤ
3 gcddvds 15939 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
41, 2, 3mp2an 692 . . . . . 6 ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)
54simpli 487 . . . . 5 (𝑀 gcd 𝑁) ∥ 𝑀
6 gcdcl 15942 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
71, 2, 6mp2an 692 . . . . . . . . 9 (𝑀 gcd 𝑁) ∈ ℕ0
87nn0zi 12081 . . . . . . . 8 (𝑀 gcd 𝑁) ∈ ℤ
9 gcdaddmlem.1 . . . . . . . . 9 𝐾 ∈ ℤ
10 1z 12086 . . . . . . . . 9 1 ∈ ℤ
11 dvds2ln 15727 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))))
129, 10, 11mpanl12 702 . . . . . . . 8 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))))
138, 1, 2, 12mp3an 1462 . . . . . . 7 (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁)))
144, 13ax-mp 5 . . . . . 6 (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))
15 zcn 12060 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
162, 15ax-mp 5 . . . . . . . 8 𝑁 ∈ ℂ
1716mulid2i 10717 . . . . . . 7 (1 · 𝑁) = 𝑁
1817oveq2i 7175 . . . . . 6 ((𝐾 · 𝑀) + (1 · 𝑁)) = ((𝐾 · 𝑀) + 𝑁)
1914, 18breqtri 5052 . . . . 5 (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)
20 zmulcl 12105 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
219, 1, 20mp2an 692 . . . . . . 7 (𝐾 · 𝑀) ∈ ℤ
22 zaddcl 12096 . . . . . . 7 (((𝐾 · 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) ∈ ℤ)
2321, 2, 22mp2an 692 . . . . . 6 ((𝐾 · 𝑀) + 𝑁) ∈ ℤ
24 dvdslegcd 15940 . . . . . . 7 ((((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
2524ex 416 . . . . . 6 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))))
268, 1, 23, 25mp3an 1462 . . . . 5 (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
275, 19, 26mp2ani 698 . . . 4 (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
28 gcddvds 15939 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)))
291, 23, 28mp2an 692 . . . . . 6 ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁))
3029simpli 487 . . . . 5 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀
31 gcdcl 15942 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℕ0)
321, 23, 31mp2an 692 . . . . . . . . 9 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℕ0
3332nn0zi 12081 . . . . . . . 8 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ
34 znegcl 12091 . . . . . . . . . 10 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
359, 34ax-mp 5 . . . . . . . . 9 -𝐾 ∈ ℤ
36 dvds2ln 15727 . . . . . . . . 9 (((-𝐾 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ)) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))))
3735, 10, 36mpanl12 702 . . . . . . . 8 (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))))
3833, 1, 23, 37mp3an 1462 . . . . . . 7 (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))))
3929, 38ax-mp 5 . . . . . 6 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))
40 zcn 12060 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
419, 40ax-mp 5 . . . . . . . . 9 𝐾 ∈ ℂ
42 zcn 12060 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
431, 42ax-mp 5 . . . . . . . . 9 𝑀 ∈ ℂ
4441, 43mulneg1i 11157 . . . . . . . 8 (-𝐾 · 𝑀) = -(𝐾 · 𝑀)
45 zcn 12060 . . . . . . . . . 10 (((𝐾 · 𝑀) + 𝑁) ∈ ℤ → ((𝐾 · 𝑀) + 𝑁) ∈ ℂ)
4623, 45ax-mp 5 . . . . . . . . 9 ((𝐾 · 𝑀) + 𝑁) ∈ ℂ
4746mulid2i 10717 . . . . . . . 8 (1 · ((𝐾 · 𝑀) + 𝑁)) = ((𝐾 · 𝑀) + 𝑁)
4844, 47oveq12i 7176 . . . . . . 7 ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))) = (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁))
4941, 43mulcli 10719 . . . . . . . . . 10 (𝐾 · 𝑀) ∈ ℂ
5049negcli 11025 . . . . . . . . . 10 -(𝐾 · 𝑀) ∈ ℂ
5149negidi 11026 . . . . . . . . . 10 ((𝐾 · 𝑀) + -(𝐾 · 𝑀)) = 0
5249, 50, 51addcomli 10903 . . . . . . . . 9 (-(𝐾 · 𝑀) + (𝐾 · 𝑀)) = 0
5352oveq1i 7174 . . . . . . . 8 ((-(𝐾 · 𝑀) + (𝐾 · 𝑀)) + 𝑁) = (0 + 𝑁)
5450, 49, 16addassi 10722 . . . . . . . 8 ((-(𝐾 · 𝑀) + (𝐾 · 𝑀)) + 𝑁) = (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁))
5516addid2i 10899 . . . . . . . 8 (0 + 𝑁) = 𝑁
5653, 54, 553eqtr3i 2769 . . . . . . 7 (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁)) = 𝑁
5748, 56eqtri 2761 . . . . . 6 ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))) = 𝑁
5839, 57breqtri 5052 . . . . 5 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁
59 dvdslegcd 15940 . . . . . . 7 ((((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
6059ex 416 . . . . . 6 (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))))
6133, 1, 2, 60mp3an 1462 . . . . 5 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
6230, 58, 61mp2ani 698 . . . 4 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))
6327, 62anim12i 616 . . 3 ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
648zrei 12061 . . . 4 (𝑀 gcd 𝑁) ∈ ℝ
6533zrei 12061 . . . 4 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℝ
6664, 65letri3i 10827 . . 3 ((𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ↔ ((𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
6763, 66sylibr 237 . 2 ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
68 pm4.57 990 . . 3 (¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ↔ ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∨ (𝑀 = 0 ∧ 𝑁 = 0)))
69 oveq2 7172 . . . . . . . . . 10 (𝑀 = 0 → (𝐾 · 𝑀) = (𝐾 · 0))
7041mul01i 10901 . . . . . . . . . 10 (𝐾 · 0) = 0
7169, 70eqtrdi 2789 . . . . . . . . 9 (𝑀 = 0 → (𝐾 · 𝑀) = 0)
7271oveq1d 7179 . . . . . . . 8 (𝑀 = 0 → ((𝐾 · 𝑀) + 𝑁) = (0 + 𝑁))
7372, 55eqtrdi 2789 . . . . . . 7 (𝑀 = 0 → ((𝐾 · 𝑀) + 𝑁) = 𝑁)
7473eqeq1d 2740 . . . . . 6 (𝑀 = 0 → (((𝐾 · 𝑀) + 𝑁) = 0 ↔ 𝑁 = 0))
7574pm5.32i 578 . . . . 5 ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ↔ (𝑀 = 0 ∧ 𝑁 = 0))
76 oveq12 7173 . . . . . 6 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (0 gcd 0))
77 oveq12 7173 . . . . . . 7 ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (0 gcd 0))
7875, 77sylbir 238 . . . . . 6 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (0 gcd 0))
7976, 78eqtr4d 2776 . . . . 5 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
8075, 79sylbi 220 . . . 4 ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
8180, 79jaoi 856 . . 3 (((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∨ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
8268, 81sylbi 220 . 2 (¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
8367, 82pm2.61i 185 1 (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 846  w3a 1088   = wceq 1542  wcel 2113   class class class wbr 5027  (class class class)co 7164  cc 10606  0cc0 10608  1c1 10609   + caddc 10611   · cmul 10613  cle 10747  -cneg 10942  0cn0 11969  cz 12055  cdvds 15692   gcd cgcd 15930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-sup 8972  df-inf 8973  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-n0 11970  df-z 12056  df-uz 12318  df-rp 12466  df-seq 13454  df-exp 13515  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-dvds 15693  df-gcd 15931
This theorem is referenced by:  gcdaddm  15961
  Copyright terms: Public domain W3C validator