MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdaddmlem Structured version   Visualization version   GIF version

Theorem gcdaddmlem 16453
Description: Lemma for gcdaddm 16454. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
gcdaddmlem.1 𝐾 ∈ ℤ
gcdaddmlem.2 𝑀 ∈ ℤ
gcdaddmlem.3 𝑁 ∈ ℤ
Assertion
Ref Expression
gcdaddmlem (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))

Proof of Theorem gcdaddmlem
StepHypRef Expression
1 gcdaddmlem.2 . . . . . . 7 𝑀 ∈ ℤ
2 gcdaddmlem.3 . . . . . . 7 𝑁 ∈ ℤ
3 gcddvds 16432 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
41, 2, 3mp2an 692 . . . . . 6 ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)
54simpli 483 . . . . 5 (𝑀 gcd 𝑁) ∥ 𝑀
6 gcdcl 16435 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
71, 2, 6mp2an 692 . . . . . . . . 9 (𝑀 gcd 𝑁) ∈ ℕ0
87nn0zi 12518 . . . . . . . 8 (𝑀 gcd 𝑁) ∈ ℤ
9 gcdaddmlem.1 . . . . . . . . 9 𝐾 ∈ ℤ
10 1z 12523 . . . . . . . . 9 1 ∈ ℤ
11 dvds2ln 16218 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))))
129, 10, 11mpanl12 702 . . . . . . . 8 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))))
138, 1, 2, 12mp3an 1463 . . . . . . 7 (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁)))
144, 13ax-mp 5 . . . . . 6 (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))
15 zcn 12494 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
162, 15ax-mp 5 . . . . . . . 8 𝑁 ∈ ℂ
1716mullidi 11139 . . . . . . 7 (1 · 𝑁) = 𝑁
1817oveq2i 7364 . . . . . 6 ((𝐾 · 𝑀) + (1 · 𝑁)) = ((𝐾 · 𝑀) + 𝑁)
1914, 18breqtri 5120 . . . . 5 (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)
20 zmulcl 12542 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
219, 1, 20mp2an 692 . . . . . . 7 (𝐾 · 𝑀) ∈ ℤ
22 zaddcl 12533 . . . . . . 7 (((𝐾 · 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) ∈ ℤ)
2321, 2, 22mp2an 692 . . . . . 6 ((𝐾 · 𝑀) + 𝑁) ∈ ℤ
24 dvdslegcd 16433 . . . . . . 7 ((((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
2524ex 412 . . . . . 6 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))))
268, 1, 23, 25mp3an 1463 . . . . 5 (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
275, 19, 26mp2ani 698 . . . 4 (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
28 gcddvds 16432 . . . . . . 7 ((𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)))
291, 23, 28mp2an 692 . . . . . 6 ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁))
3029simpli 483 . . . . 5 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀
31 gcdcl 16435 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℕ0)
321, 23, 31mp2an 692 . . . . . . . . 9 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℕ0
3332nn0zi 12518 . . . . . . . 8 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ
34 znegcl 12528 . . . . . . . . . 10 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
359, 34ax-mp 5 . . . . . . . . 9 -𝐾 ∈ ℤ
36 dvds2ln 16218 . . . . . . . . 9 (((-𝐾 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ)) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))))
3735, 10, 36mpanl12 702 . . . . . . . 8 (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))))
3833, 1, 23, 37mp3an 1463 . . . . . . 7 (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))))
3929, 38ax-mp 5 . . . . . 6 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))
40 zcn 12494 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
419, 40ax-mp 5 . . . . . . . . 9 𝐾 ∈ ℂ
42 zcn 12494 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
431, 42ax-mp 5 . . . . . . . . 9 𝑀 ∈ ℂ
4441, 43mulneg1i 11584 . . . . . . . 8 (-𝐾 · 𝑀) = -(𝐾 · 𝑀)
45 zcn 12494 . . . . . . . . . 10 (((𝐾 · 𝑀) + 𝑁) ∈ ℤ → ((𝐾 · 𝑀) + 𝑁) ∈ ℂ)
4623, 45ax-mp 5 . . . . . . . . 9 ((𝐾 · 𝑀) + 𝑁) ∈ ℂ
4746mullidi 11139 . . . . . . . 8 (1 · ((𝐾 · 𝑀) + 𝑁)) = ((𝐾 · 𝑀) + 𝑁)
4844, 47oveq12i 7365 . . . . . . 7 ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))) = (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁))
4941, 43mulcli 11141 . . . . . . . . . 10 (𝐾 · 𝑀) ∈ ℂ
5049negcli 11450 . . . . . . . . . 10 -(𝐾 · 𝑀) ∈ ℂ
5149negidi 11451 . . . . . . . . . 10 ((𝐾 · 𝑀) + -(𝐾 · 𝑀)) = 0
5249, 50, 51addcomli 11326 . . . . . . . . 9 (-(𝐾 · 𝑀) + (𝐾 · 𝑀)) = 0
5352oveq1i 7363 . . . . . . . 8 ((-(𝐾 · 𝑀) + (𝐾 · 𝑀)) + 𝑁) = (0 + 𝑁)
5450, 49, 16addassi 11144 . . . . . . . 8 ((-(𝐾 · 𝑀) + (𝐾 · 𝑀)) + 𝑁) = (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁))
5516addlidi 11322 . . . . . . . 8 (0 + 𝑁) = 𝑁
5653, 54, 553eqtr3i 2760 . . . . . . 7 (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁)) = 𝑁
5748, 56eqtri 2752 . . . . . 6 ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))) = 𝑁
5839, 57breqtri 5120 . . . . 5 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁
59 dvdslegcd 16433 . . . . . . 7 ((((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
6059ex 412 . . . . . 6 (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))))
6133, 1, 2, 60mp3an 1463 . . . . 5 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
6230, 58, 61mp2ani 698 . . . 4 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))
6327, 62anim12i 613 . . 3 ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
648zrei 12495 . . . 4 (𝑀 gcd 𝑁) ∈ ℝ
6533zrei 12495 . . . 4 (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℝ
6664, 65letri3i 11250 . . 3 ((𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ↔ ((𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
6763, 66sylibr 234 . 2 ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
68 pm4.57 992 . . 3 (¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ↔ ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∨ (𝑀 = 0 ∧ 𝑁 = 0)))
69 oveq2 7361 . . . . . . . . . 10 (𝑀 = 0 → (𝐾 · 𝑀) = (𝐾 · 0))
7041mul01i 11324 . . . . . . . . . 10 (𝐾 · 0) = 0
7169, 70eqtrdi 2780 . . . . . . . . 9 (𝑀 = 0 → (𝐾 · 𝑀) = 0)
7271oveq1d 7368 . . . . . . . 8 (𝑀 = 0 → ((𝐾 · 𝑀) + 𝑁) = (0 + 𝑁))
7372, 55eqtrdi 2780 . . . . . . 7 (𝑀 = 0 → ((𝐾 · 𝑀) + 𝑁) = 𝑁)
7473eqeq1d 2731 . . . . . 6 (𝑀 = 0 → (((𝐾 · 𝑀) + 𝑁) = 0 ↔ 𝑁 = 0))
7574pm5.32i 574 . . . . 5 ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ↔ (𝑀 = 0 ∧ 𝑁 = 0))
76 oveq12 7362 . . . . . 6 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (0 gcd 0))
77 oveq12 7362 . . . . . . 7 ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (0 gcd 0))
7875, 77sylbir 235 . . . . . 6 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (0 gcd 0))
7976, 78eqtr4d 2767 . . . . 5 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
8075, 79sylbi 217 . . . 4 ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
8180, 79jaoi 857 . . 3 (((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∨ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
8268, 81sylbi 217 . 2 (¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
8367, 82pm2.61i 182 1 (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cle 11169  -cneg 11366  0cn0 12402  cz 12489  cdvds 16181   gcd cgcd 16423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424
This theorem is referenced by:  gcdaddm  16454
  Copyright terms: Public domain W3C validator