Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oran Structured version   Visualization version   GIF version

Theorem oran 987
 Description: Disjunction in terms of conjunction (De Morgan's law). Compare Theorem *4.57 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Assertion
Ref Expression
oran ((𝜑𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓))

Proof of Theorem oran
StepHypRef Expression
1 pm4.56 986 . 2 ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
21con2bii 361 1 ((𝜑𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209   ∧ wa 399   ∨ wo 844 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845 This theorem is referenced by:  pm4.57  988  norassOLD  1535  19.43OLD  1884  ordthauslem  21991  mideulem2  26531  opphllem  26532  ordtconnlem1  31275  poimirlem9  35059  ftc1anclem1  35123  xrlttri5d  41901
 Copyright terms: Public domain W3C validator