MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oran Structured version   Visualization version   GIF version

Theorem oran 987
Description: Disjunction in terms of conjunction (De Morgan's law). Compare Theorem *4.57 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Assertion
Ref Expression
oran ((𝜑𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓))

Proof of Theorem oran
StepHypRef Expression
1 pm4.56 986 . 2 ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
21con2bii 358 1 ((𝜑𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845
This theorem is referenced by:  pm4.57  988  norassOLD  1536  19.43OLD  1886  ordthauslem  22534  mideulem2  27095  opphllem  27096  ordtconnlem1  31874  poimirlem9  35786  ftc1anclem1  35850  xrlttri5d  42822
  Copyright terms: Public domain W3C validator