Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oran | Structured version Visualization version GIF version |
Description: Disjunction in terms of conjunction (De Morgan's law). Compare Theorem *4.57 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
oran | ⊢ ((𝜑 ∨ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.56 986 | . 2 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) | |
2 | 1 | con2bii 358 | 1 ⊢ ((𝜑 ∨ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: pm4.57 988 norassOLD 1536 19.43OLD 1886 ordthauslem 22534 mideulem2 27095 opphllem 27096 ordtconnlem1 31874 poimirlem9 35786 ftc1anclem1 35850 xrlttri5d 42822 |
Copyright terms: Public domain | W3C validator |