|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > oran | Structured version Visualization version GIF version | ||
| Description: Disjunction in terms of conjunction (De Morgan's law). Compare Theorem *4.57 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) | 
| Ref | Expression | 
|---|---|
| oran | ⊢ ((𝜑 ∨ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm4.56 990 | . 2 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) | |
| 2 | 1 | con2bii 357 | 1 ⊢ ((𝜑 ∨ 𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 | 
| This theorem is referenced by: pm4.57 992 19.43OLD 1882 ordthauslem 23392 mideulem2 28743 opphllem 28744 ordtconnlem1 33924 poimirlem9 37637 ftc1anclem1 37701 onsucf1olem 43288 xrlttri5d 45300 | 
| Copyright terms: Public domain | W3C validator |