| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tsbi2 | Structured version Visualization version GIF version | ||
| Description: A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
| Ref | Expression |
|---|---|
| tsbi2 | ⊢ (𝜃 → ((𝜑 ∨ 𝜓) ∨ (𝜑 ↔ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21 825 | . . . 4 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | olcd 875 | . . 3 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜑 ∨ 𝜓) ∨ (𝜑 ↔ 𝜓))) |
| 3 | pm4.57 993 | . . . . 5 ⊢ (¬ (¬ 𝜑 ∧ ¬ 𝜓) ↔ (𝜑 ∨ 𝜓)) | |
| 4 | 3 | biimpi 216 | . . . 4 ⊢ (¬ (¬ 𝜑 ∧ ¬ 𝜓) → (𝜑 ∨ 𝜓)) |
| 5 | 4 | orcd 874 | . . 3 ⊢ (¬ (¬ 𝜑 ∧ ¬ 𝜓) → ((𝜑 ∨ 𝜓) ∨ (𝜑 ↔ 𝜓))) |
| 6 | 2, 5 | pm2.61i 182 | . 2 ⊢ ((𝜑 ∨ 𝜓) ∨ (𝜑 ↔ 𝜓)) |
| 7 | 6 | a1i 11 | 1 ⊢ (𝜃 → ((𝜑 ∨ 𝜓) ∨ (𝜑 ↔ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 |
| This theorem is referenced by: tsxo2 38145 mpobi123f 38169 mptbi12f 38173 ac6s6 38179 |
| Copyright terms: Public domain | W3C validator |