Proof of Theorem arg-ax
| Step | Hyp | Ref
| Expression |
| 1 | | df-nan 1491 |
. . . . 5
⊢ ((𝜃 ⊼ 𝜒) ↔ ¬ (𝜃 ∧ 𝜒)) |
| 2 | | pm4.57 992 |
. . . . . . . 8
⊢ (¬
(¬ (𝜒 ∧ 𝜃) ∧ ¬ (𝜑 ∧ 𝜃)) ↔ ((𝜒 ∧ 𝜃) ∨ (𝜑 ∧ 𝜃))) |
| 3 | | orel2 890 |
. . . . . . . . . . . . 13
⊢ (¬
𝜑 → ((𝜒 ∨ 𝜑) → 𝜒)) |
| 4 | 3 | com12 32 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∨ 𝜑) → (¬ 𝜑 → 𝜒)) |
| 5 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜓 ∧ 𝜒) → 𝜒) |
| 6 | 5 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∨ 𝜑) → ((𝜓 ∧ 𝜒) → 𝜒)) |
| 7 | 4, 6 | jad 187 |
. . . . . . . . . . 11
⊢ ((𝜒 ∨ 𝜑) → ((𝜑 → (𝜓 ∧ 𝜒)) → 𝜒)) |
| 8 | 7 | com12 32 |
. . . . . . . . . 10
⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → ((𝜒 ∨ 𝜑) → 𝜒)) |
| 9 | | pm3.45 622 |
. . . . . . . . . . . 12
⊢ ((𝜒 → 𝜒) → ((𝜒 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| 10 | | pm3.45 622 |
. . . . . . . . . . . 12
⊢ ((𝜑 → 𝜒) → ((𝜑 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| 11 | 9, 10 | anim12i 613 |
. . . . . . . . . . 11
⊢ (((𝜒 → 𝜒) ∧ (𝜑 → 𝜒)) → (((𝜒 ∧ 𝜃) → (𝜒 ∧ 𝜃)) ∧ ((𝜑 ∧ 𝜃) → (𝜒 ∧ 𝜃)))) |
| 12 | | jaob 963 |
. . . . . . . . . . 11
⊢ (((𝜒 ∨ 𝜑) → 𝜒) ↔ ((𝜒 → 𝜒) ∧ (𝜑 → 𝜒))) |
| 13 | | jaob 963 |
. . . . . . . . . . 11
⊢ ((((𝜒 ∧ 𝜃) ∨ (𝜑 ∧ 𝜃)) → (𝜒 ∧ 𝜃)) ↔ (((𝜒 ∧ 𝜃) → (𝜒 ∧ 𝜃)) ∧ ((𝜑 ∧ 𝜃) → (𝜒 ∧ 𝜃)))) |
| 14 | 11, 12, 13 | 3imtr4i 292 |
. . . . . . . . . 10
⊢ (((𝜒 ∨ 𝜑) → 𝜒) → (((𝜒 ∧ 𝜃) ∨ (𝜑 ∧ 𝜃)) → (𝜒 ∧ 𝜃))) |
| 15 | 8, 14 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (((𝜒 ∧ 𝜃) ∨ (𝜑 ∧ 𝜃)) → (𝜒 ∧ 𝜃))) |
| 16 | | pm3.22 459 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝜃) → (𝜃 ∧ 𝜒)) |
| 17 | 15, 16 | syl6 35 |
. . . . . . . 8
⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (((𝜒 ∧ 𝜃) ∨ (𝜑 ∧ 𝜃)) → (𝜃 ∧ 𝜒))) |
| 18 | 2, 17 | biimtrid 242 |
. . . . . . 7
⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (¬ (¬ (𝜒 ∧ 𝜃) ∧ ¬ (𝜑 ∧ 𝜃)) → (𝜃 ∧ 𝜒))) |
| 19 | 18 | con1d 145 |
. . . . . 6
⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (¬ (𝜃 ∧ 𝜒) → (¬ (𝜒 ∧ 𝜃) ∧ ¬ (𝜑 ∧ 𝜃)))) |
| 20 | | df-nan 1491 |
. . . . . . . 8
⊢ ((𝜒 ⊼ 𝜃) ↔ ¬ (𝜒 ∧ 𝜃)) |
| 21 | 20 | biimpri 228 |
. . . . . . 7
⊢ (¬
(𝜒 ∧ 𝜃) → (𝜒 ⊼ 𝜃)) |
| 22 | | df-nan 1491 |
. . . . . . . 8
⊢ ((𝜑 ⊼ 𝜃) ↔ ¬ (𝜑 ∧ 𝜃)) |
| 23 | 22 | biimpri 228 |
. . . . . . 7
⊢ (¬
(𝜑 ∧ 𝜃) → (𝜑 ⊼ 𝜃)) |
| 24 | 21, 23 | anim12i 613 |
. . . . . 6
⊢ ((¬
(𝜒 ∧ 𝜃) ∧ ¬ (𝜑 ∧ 𝜃)) → ((𝜒 ⊼ 𝜃) ∧ (𝜑 ⊼ 𝜃))) |
| 25 | 19, 24 | syl6 35 |
. . . . 5
⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (¬ (𝜃 ∧ 𝜒) → ((𝜒 ⊼ 𝜃) ∧ (𝜑 ⊼ 𝜃)))) |
| 26 | 1, 25 | biimtrid 242 |
. . . 4
⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → ((𝜃 ⊼ 𝜒) → ((𝜒 ⊼ 𝜃) ∧ (𝜑 ⊼ 𝜃)))) |
| 27 | | nannan 1496 |
. . . 4
⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ↔ (𝜑 → (𝜓 ∧ 𝜒))) |
| 28 | | nannan 1496 |
. . . 4
⊢ (((𝜃 ⊼ 𝜒) ⊼ ((𝜒 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) ↔ ((𝜃 ⊼ 𝜒) → ((𝜒 ⊼ 𝜃) ∧ (𝜑 ⊼ 𝜃)))) |
| 29 | 26, 27, 28 | 3imtr4i 292 |
. . 3
⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) → ((𝜃 ⊼ 𝜒) ⊼ ((𝜒 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃)))) |
| 30 | 29 | ancli 548 |
. 2
⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) → ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ∧ ((𝜃 ⊼ 𝜒) ⊼ ((𝜒 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) |
| 31 | | nannan 1496 |
. 2
⊢ (((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ⊼ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜒 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) ↔ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) → ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ∧ ((𝜃 ⊼ 𝜒) ⊼ ((𝜒 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃)))))) |
| 32 | 30, 31 | mpbir 231 |
1
⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ⊼ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜒 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) |