Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inlinecirc02preu Structured version   Visualization version   GIF version

Theorem inlinecirc02preu 46948
Description: Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points, expressed with restricted uniqueness (and without the definition of proper pairs). (Contributed by AV, 16-May-2023.)
Hypotheses
Ref Expression
inlinecirc02p.i 𝐼 = {1, 2}
inlinecirc02p.e 𝐸 = (ℝ^β€˜πΌ)
inlinecirc02p.p 𝑃 = (ℝ ↑m 𝐼)
inlinecirc02p.s 𝑆 = (Sphereβ€˜πΈ)
inlinecirc02p.0 0 = (𝐼 Γ— {0})
inlinecirc02p.l 𝐿 = (LineMβ€˜πΈ)
inlinecirc02p.d 𝐷 = (distβ€˜πΈ)
Assertion
Ref Expression
inlinecirc02preu (((𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑃 ∧ 𝑋 β‰  π‘Œ) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) β†’ βˆƒ!𝑝 ∈ 𝒫 𝑃((β™―β€˜π‘) = 2 ∧ 𝑝 = (( 0 𝑆𝑅) ∩ (π‘‹πΏπ‘Œ))))
Distinct variable groups:   𝐿,𝑝   𝑃,𝑝   𝑅,𝑝   𝑆,𝑝   𝑋,𝑝   π‘Œ,𝑝   0 ,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝐸(𝑝)   𝐼(𝑝)

Proof of Theorem inlinecirc02preu
StepHypRef Expression
1 inlinecirc02p.i . . . 4 𝐼 = {1, 2}
2 inlinecirc02p.e . . . 4 𝐸 = (ℝ^β€˜πΌ)
3 inlinecirc02p.p . . . 4 𝑃 = (ℝ ↑m 𝐼)
4 inlinecirc02p.s . . . 4 𝑆 = (Sphereβ€˜πΈ)
5 inlinecirc02p.0 . . . 4 0 = (𝐼 Γ— {0})
6 inlinecirc02p.l . . . 4 𝐿 = (LineMβ€˜πΈ)
7 inlinecirc02p.d . . . 4 𝐷 = (distβ€˜πΈ)
81, 2, 3, 4, 5, 6, 7inlinecirc02p 46947 . . 3 (((𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑃 ∧ 𝑋 β‰  π‘Œ) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) β†’ (( 0 𝑆𝑅) ∩ (π‘‹πΏπ‘Œ)) ∈ (Pairsproperβ€˜π‘ƒ))
9 reueq 3700 . . 3 ((( 0 𝑆𝑅) ∩ (π‘‹πΏπ‘Œ)) ∈ (Pairsproperβ€˜π‘ƒ) ↔ βˆƒ!𝑝 ∈ (Pairsproperβ€˜π‘ƒ)𝑝 = (( 0 𝑆𝑅) ∩ (π‘‹πΏπ‘Œ)))
108, 9sylib 217 . 2 (((𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑃 ∧ 𝑋 β‰  π‘Œ) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) β†’ βˆƒ!𝑝 ∈ (Pairsproperβ€˜π‘ƒ)𝑝 = (( 0 𝑆𝑅) ∩ (π‘‹πΏπ‘Œ)))
113ovexi 7396 . . 3 𝑃 ∈ V
12 prprreueq 45786 . . 3 (𝑃 ∈ V β†’ (βˆƒ!𝑝 ∈ (Pairsproperβ€˜π‘ƒ)𝑝 = (( 0 𝑆𝑅) ∩ (π‘‹πΏπ‘Œ)) ↔ βˆƒ!𝑝 ∈ 𝒫 𝑃((β™―β€˜π‘) = 2 ∧ 𝑝 = (( 0 𝑆𝑅) ∩ (π‘‹πΏπ‘Œ)))))
1311, 12mp1i 13 . 2 (((𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑃 ∧ 𝑋 β‰  π‘Œ) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) β†’ (βˆƒ!𝑝 ∈ (Pairsproperβ€˜π‘ƒ)𝑝 = (( 0 𝑆𝑅) ∩ (π‘‹πΏπ‘Œ)) ↔ βˆƒ!𝑝 ∈ 𝒫 𝑃((β™―β€˜π‘) = 2 ∧ 𝑝 = (( 0 𝑆𝑅) ∩ (π‘‹πΏπ‘Œ)))))
1410, 13mpbid 231 1 (((𝑋 ∈ 𝑃 ∧ π‘Œ ∈ 𝑃 ∧ 𝑋 β‰  π‘Œ) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) β†’ βˆƒ!𝑝 ∈ 𝒫 𝑃((β™―β€˜π‘) = 2 ∧ 𝑝 = (( 0 𝑆𝑅) ∩ (π‘‹πΏπ‘Œ))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944  βˆƒ!wreu 3354  Vcvv 3448   ∩ cin 3914  π’« cpw 4565  {csn 4591  {cpr 4593   class class class wbr 5110   Γ— cxp 5636  β€˜cfv 6501  (class class class)co 7362   ↑m cmap 8772  β„cr 11057  0cc0 11058  1c1 11059   < clt 11196  2c2 12215  β„+crp 12922  β™―chash 14237  distcds 17149  β„^crrx 24763  Pairspropercprpr 45778  LineMcline 46887  Spherecsph 46888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136  ax-addf 11137  ax-mulf 11138
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-er 8655  df-map 8774  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-sup 9385  df-oi 9453  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-z 12507  df-dec 12626  df-uz 12771  df-rp 12923  df-xneg 13040  df-xadd 13041  df-xmul 13042  df-ico 13277  df-icc 13278  df-fz 13432  df-fzo 13575  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-sum 15578  df-struct 17026  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-mulr 17154  df-starv 17155  df-sca 17156  df-vsca 17157  df-ip 17158  df-tset 17159  df-ple 17160  df-ds 17162  df-unif 17163  df-hom 17164  df-cco 17165  df-0g 17330  df-gsum 17331  df-prds 17336  df-pws 17338  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-mhm 18608  df-grp 18758  df-minusg 18759  df-sbg 18760  df-subg 18932  df-ghm 19013  df-cntz 19104  df-cmn 19571  df-abl 19572  df-mgp 19904  df-ur 19921  df-ring 19973  df-cring 19974  df-oppr 20056  df-dvdsr 20077  df-unit 20078  df-invr 20108  df-dvr 20119  df-rnghom 20155  df-drng 20201  df-field 20202  df-subrg 20236  df-staf 20320  df-srng 20321  df-lmod 20340  df-lss 20409  df-sra 20649  df-rgmod 20650  df-xmet 20805  df-met 20806  df-cnfld 20813  df-refld 21025  df-dsmm 21154  df-frlm 21169  df-nm 23954  df-tng 23956  df-tcph 24549  df-rrx 24765  df-ehl 24766  df-prpr 45779  df-line 46889  df-sph 46890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator