![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inlinecirc02preu | Structured version Visualization version GIF version |
Description: Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points, expressed with restricted uniqueness (and without the definition of proper pairs). (Contributed by AV, 16-May-2023.) |
Ref | Expression |
---|---|
inlinecirc02p.i | β’ πΌ = {1, 2} |
inlinecirc02p.e | β’ πΈ = (β^βπΌ) |
inlinecirc02p.p | β’ π = (β βm πΌ) |
inlinecirc02p.s | β’ π = (SphereβπΈ) |
inlinecirc02p.0 | β’ 0 = (πΌ Γ {0}) |
inlinecirc02p.l | β’ πΏ = (LineMβπΈ) |
inlinecirc02p.d | β’ π· = (distβπΈ) |
Ref | Expression |
---|---|
inlinecirc02preu | β’ (((π β π β§ π β π β§ π β π) β§ (π β β+ β§ (ππ· 0 ) < π )) β β!π β π« π((β―βπ) = 2 β§ π = (( 0 ππ ) β© (ππΏπ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inlinecirc02p.i | . . . 4 β’ πΌ = {1, 2} | |
2 | inlinecirc02p.e | . . . 4 β’ πΈ = (β^βπΌ) | |
3 | inlinecirc02p.p | . . . 4 β’ π = (β βm πΌ) | |
4 | inlinecirc02p.s | . . . 4 β’ π = (SphereβπΈ) | |
5 | inlinecirc02p.0 | . . . 4 β’ 0 = (πΌ Γ {0}) | |
6 | inlinecirc02p.l | . . . 4 β’ πΏ = (LineMβπΈ) | |
7 | inlinecirc02p.d | . . . 4 β’ π· = (distβπΈ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | inlinecirc02p 47972 | . . 3 β’ (((π β π β§ π β π β§ π β π) β§ (π β β+ β§ (ππ· 0 ) < π )) β (( 0 ππ ) β© (ππΏπ)) β (Pairsproperβπ)) |
9 | reueq 3730 | . . 3 β’ ((( 0 ππ ) β© (ππΏπ)) β (Pairsproperβπ) β β!π β (Pairsproperβπ)π = (( 0 ππ ) β© (ππΏπ))) | |
10 | 8, 9 | sylib 217 | . 2 β’ (((π β π β§ π β π β§ π β π) β§ (π β β+ β§ (ππ· 0 ) < π )) β β!π β (Pairsproperβπ)π = (( 0 ππ ) β© (ππΏπ))) |
11 | 3 | ovexi 7451 | . . 3 β’ π β V |
12 | prprreueq 46923 | . . 3 β’ (π β V β (β!π β (Pairsproperβπ)π = (( 0 ππ ) β© (ππΏπ)) β β!π β π« π((β―βπ) = 2 β§ π = (( 0 ππ ) β© (ππΏπ))))) | |
13 | 11, 12 | mp1i 13 | . 2 β’ (((π β π β§ π β π β§ π β π) β§ (π β β+ β§ (ππ· 0 ) < π )) β (β!π β (Pairsproperβπ)π = (( 0 ππ ) β© (ππΏπ)) β β!π β π« π((β―βπ) = 2 β§ π = (( 0 ππ ) β© (ππΏπ))))) |
14 | 10, 13 | mpbid 231 | 1 β’ (((π β π β§ π β π β§ π β π) β§ (π β β+ β§ (ππ· 0 ) < π )) β β!π β π« π((β―βπ) = 2 β§ π = (( 0 ππ ) β© (ππΏπ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2930 β!wreu 3362 Vcvv 3463 β© cin 3944 π« cpw 4603 {csn 4629 {cpr 4631 class class class wbr 5148 Γ cxp 5675 βcfv 6547 (class class class)co 7417 βm cmap 8843 βcr 11137 0cc0 11138 1c1 11139 < clt 11278 2c2 12297 β+crp 13006 β―chash 14321 distcds 17241 β^crrx 25341 Pairspropercprpr 46915 LineMcline 47912 Spherecsph 47913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 ax-mulf 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-isom 6556 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-of 7683 df-om 7870 df-1st 7992 df-2nd 7993 df-supp 8164 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8723 df-map 8845 df-ixp 8915 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-fsupp 9386 df-sup 9465 df-oi 9533 df-dju 9924 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-ico 13362 df-icc 13363 df-fz 13517 df-fzo 13660 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-clim 15464 df-sum 15665 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-hom 17256 df-cco 17257 df-0g 17422 df-gsum 17423 df-prds 17428 df-pws 17430 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-mhm 18739 df-grp 18897 df-minusg 18898 df-sbg 18899 df-subg 19082 df-ghm 19172 df-cntz 19272 df-cmn 19741 df-abl 19742 df-mgp 20079 df-rng 20097 df-ur 20126 df-ring 20179 df-cring 20180 df-oppr 20277 df-dvdsr 20300 df-unit 20301 df-invr 20331 df-dvr 20344 df-rhm 20415 df-subrng 20487 df-subrg 20512 df-drng 20630 df-field 20631 df-staf 20729 df-srng 20730 df-lmod 20749 df-lss 20820 df-sra 21062 df-rgmod 21063 df-xmet 21276 df-met 21277 df-cnfld 21284 df-refld 21541 df-dsmm 21670 df-frlm 21685 df-nm 24521 df-tng 24523 df-tcph 25127 df-rrx 25343 df-ehl 25344 df-prpr 46916 df-line 47914 df-sph 47915 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |