| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inlinecirc02preu | Structured version Visualization version GIF version | ||
| Description: Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points, expressed with restricted uniqueness (and without the definition of proper pairs). (Contributed by AV, 16-May-2023.) |
| Ref | Expression |
|---|---|
| inlinecirc02p.i | ⊢ 𝐼 = {1, 2} |
| inlinecirc02p.e | ⊢ 𝐸 = (ℝ^‘𝐼) |
| inlinecirc02p.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| inlinecirc02p.s | ⊢ 𝑆 = (Sphere‘𝐸) |
| inlinecirc02p.0 | ⊢ 0 = (𝐼 × {0}) |
| inlinecirc02p.l | ⊢ 𝐿 = (LineM‘𝐸) |
| inlinecirc02p.d | ⊢ 𝐷 = (dist‘𝐸) |
| Ref | Expression |
|---|---|
| inlinecirc02preu | ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑝 ∈ 𝒫 𝑃((♯‘𝑝) = 2 ∧ 𝑝 = (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inlinecirc02p.i | . . . 4 ⊢ 𝐼 = {1, 2} | |
| 2 | inlinecirc02p.e | . . . 4 ⊢ 𝐸 = (ℝ^‘𝐼) | |
| 3 | inlinecirc02p.p | . . . 4 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 4 | inlinecirc02p.s | . . . 4 ⊢ 𝑆 = (Sphere‘𝐸) | |
| 5 | inlinecirc02p.0 | . . . 4 ⊢ 0 = (𝐼 × {0}) | |
| 6 | inlinecirc02p.l | . . . 4 ⊢ 𝐿 = (LineM‘𝐸) | |
| 7 | inlinecirc02p.d | . . . 4 ⊢ 𝐷 = (dist‘𝐸) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | inlinecirc02p 48773 | . . 3 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper‘𝑃)) |
| 9 | reueq 3708 | . . 3 ⊢ ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper‘𝑃) ↔ ∃!𝑝 ∈ (Pairsproper‘𝑃)𝑝 = (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌))) | |
| 10 | 8, 9 | sylib 218 | . 2 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑝 ∈ (Pairsproper‘𝑃)𝑝 = (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌))) |
| 11 | 3 | ovexi 7421 | . . 3 ⊢ 𝑃 ∈ V |
| 12 | prprreueq 47518 | . . 3 ⊢ (𝑃 ∈ V → (∃!𝑝 ∈ (Pairsproper‘𝑃)𝑝 = (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ↔ ∃!𝑝 ∈ 𝒫 𝑃((♯‘𝑝) = 2 ∧ 𝑝 = (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌))))) | |
| 13 | 11, 12 | mp1i 13 | . 2 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (∃!𝑝 ∈ (Pairsproper‘𝑃)𝑝 = (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ↔ ∃!𝑝 ∈ 𝒫 𝑃((♯‘𝑝) = 2 ∧ 𝑝 = (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌))))) |
| 14 | 10, 13 | mpbid 232 | 1 ⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃!𝑝 ∈ 𝒫 𝑃((♯‘𝑝) = 2 ∧ 𝑝 = (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃!wreu 3352 Vcvv 3447 ∩ cin 3913 𝒫 cpw 4563 {csn 4589 {cpr 4591 class class class wbr 5107 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ℝcr 11067 0cc0 11068 1c1 11069 < clt 11208 2c2 12241 ℝ+crp 12951 ♯chash 14295 distcds 17229 ℝ^crrx 25283 Pairspropercprpr 47510 LineMcline 48713 Spherecsph 48714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-drng 20640 df-field 20641 df-staf 20748 df-srng 20749 df-lmod 20768 df-lss 20838 df-sra 21080 df-rgmod 21081 df-xmet 21257 df-met 21258 df-cnfld 21265 df-refld 21514 df-dsmm 21641 df-frlm 21656 df-nm 24470 df-tng 24472 df-tcph 25069 df-rrx 25285 df-ehl 25286 df-prpr 47511 df-line 48715 df-sph 48716 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |