| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71d | Structured version Visualization version GIF version | ||
| Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| pm4.71d | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | pm4.71 557 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.71rd 562 rabeqcda 3407 difin2 4250 resopab2 5992 ordtri3 6350 onunel 6421 resoprab2 7474 naddsuc2 8625 psgnran 19435 efgcpbllemb 19675 cndis 23226 cnindis 23227 cnpdis 23228 blpnf 24332 dscopn 24508 itgcn 25793 limcnlp 25826 2sqreultlem 27405 2sqreunnltlem 27408 dfcgrg2 28861 nb3gr2nb 29383 uspgr2wlkeq 29645 upgrspthswlk 29737 wspthsnwspthsnon 29915 wpthswwlks2on 29963 1stpreima 32712 cntzsnid 33090 erler 33275 subsdrg 33308 qusxpid 33372 qsfld 33507 ressply1mon1p 33577 fsumcvg4 34035 mbfmcnt 34353 satfv0 35474 topdifinffinlem 37464 phpreu 37717 ptrest 37732 rngosn3 38037 isidlc 38128 dih1 41458 redvmptabs 42530 prjsperref 42764 lzunuz 42925 nadd1suc 43549 fsovrfovd 44166 uneqsn 44182 itsclquadeu 48939 pm4.71da 48951 i0oii 49081 io1ii 49082 |
| Copyright terms: Public domain | W3C validator |