| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71d | Structured version Visualization version GIF version | ||
| Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| pm4.71d | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | pm4.71 557 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.71rd 562 rabeqcda 3414 difin2 4260 resopab2 5996 ordtri3 6356 onunel 6427 resoprab2 7488 naddsuc2 8642 psgnran 19421 efgcpbllemb 19661 cndis 23154 cnindis 23155 cnpdis 23156 blpnf 24261 dscopn 24437 itgcn 25722 limcnlp 25755 2sqreultlem 27334 2sqreunnltlem 27337 dfcgrg2 28766 nb3gr2nb 29287 uspgr2wlkeq 29549 upgrspthswlk 29641 wspthsnwspthsnon 29819 wpthswwlks2on 29864 1stpreima 32603 cntzsnid 32982 erler 33189 subsdrg 33221 qusxpid 33307 qsfld 33442 ressply1mon1p 33510 fsumcvg4 33913 mbfmcnt 34232 satfv0 35318 topdifinffinlem 37308 phpreu 37571 ptrest 37586 rngosn3 37891 isidlc 37982 dih1 41253 redvmptabs 42321 prjsperref 42567 lzunuz 42729 nadd1suc 43354 fsovrfovd 43971 uneqsn 43987 itsclquadeu 48739 pm4.71da 48751 i0oii 48881 io1ii 48882 |
| Copyright terms: Public domain | W3C validator |