![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.71d | Structured version Visualization version GIF version |
Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
pm4.71d | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | pm4.71 557 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm4.71rd 562 rabeqcda 3445 difin2 4307 resopab2 6056 ordtri3 6422 onunel 6491 resoprab2 7552 naddsuc2 8738 psgnran 19548 efgcpbllemb 19788 cndis 23315 cnindis 23316 cnpdis 23317 blpnf 24423 dscopn 24602 itgcn 25895 limcnlp 25928 2sqreultlem 27506 2sqreunnltlem 27509 dfcgrg2 28886 nb3gr2nb 29416 uspgr2wlkeq 29679 upgrspthswlk 29771 wspthsnwspthsnon 29946 wpthswwlks2on 29991 1stpreima 32722 cntzsnid 33055 erler 33252 qusxpid 33371 qsfld 33506 ressply1mon1p 33573 fsumcvg4 33911 mbfmcnt 34250 satfv0 35343 topdifinffinlem 37330 phpreu 37591 ptrest 37606 rngosn3 37911 isidlc 38002 dih1 41269 redvmptabs 42369 prjsperref 42593 lzunuz 42756 nadd1suc 43382 fsovrfovd 43999 uneqsn 44015 itsclquadeu 48627 pm4.71da 48639 i0oii 48716 io1ii 48717 |
Copyright terms: Public domain | W3C validator |