![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.71d | Structured version Visualization version GIF version |
Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
pm4.71d | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | pm4.71 558 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: pm4.71rd 563 rabeqcda 3443 difin2 4291 resopab2 6036 ordtri3 6400 onunel 6469 resoprab2 7526 psgnran 19382 efgcpbllemb 19622 cndis 22794 cnindis 22795 cnpdis 22796 blpnf 23902 dscopn 24081 itgcn 25361 limcnlp 25394 2sqreultlem 26947 2sqreunnltlem 26950 dfcgrg2 28111 nb3gr2nb 28638 uspgr2wlkeq 28900 upgrspthswlk 28992 wspthsnwspthsnon 29167 wpthswwlks2on 29212 1stpreima 31923 cntzsnid 32208 qusxpid 32470 qsfld 32607 ressply1mon1p 32652 fsumcvg4 32925 mbfmcnt 33262 satfv0 34344 topdifinffinlem 36223 phpreu 36467 ptrest 36482 rngosn3 36787 isidlc 36878 dih1 40152 prjsperref 41349 lzunuz 41496 nadd1suc 42132 naddsuc2 42133 fsovrfovd 42750 uneqsn 42766 itsclquadeu 47453 pm4.71da 47465 i0oii 47542 io1ii 47543 |
Copyright terms: Public domain | W3C validator |