| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71d | Structured version Visualization version GIF version | ||
| Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| pm4.71d | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | pm4.71 557 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.71rd 562 rabeqcda 3417 difin2 4264 resopab2 6007 ordtri3 6368 onunel 6439 resoprab2 7508 naddsuc2 8665 psgnran 19445 efgcpbllemb 19685 cndis 23178 cnindis 23179 cnpdis 23180 blpnf 24285 dscopn 24461 itgcn 25746 limcnlp 25779 2sqreultlem 27358 2sqreunnltlem 27361 dfcgrg2 28790 nb3gr2nb 29311 uspgr2wlkeq 29574 upgrspthswlk 29668 wspthsnwspthsnon 29846 wpthswwlks2on 29891 1stpreima 32630 cntzsnid 33009 erler 33216 subsdrg 33248 qusxpid 33334 qsfld 33469 ressply1mon1p 33537 fsumcvg4 33940 mbfmcnt 34259 satfv0 35345 topdifinffinlem 37335 phpreu 37598 ptrest 37613 rngosn3 37918 isidlc 38009 dih1 41280 redvmptabs 42348 prjsperref 42594 lzunuz 42756 nadd1suc 43381 fsovrfovd 43998 uneqsn 44014 itsclquadeu 48763 pm4.71da 48775 i0oii 48905 io1ii 48906 |
| Copyright terms: Public domain | W3C validator |