| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71d | Structured version Visualization version GIF version | ||
| Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| pm4.71d | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | pm4.71 557 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.71rd 562 rabeqcda 3432 difin2 4281 resopab2 6028 ordtri3 6393 onunel 6464 resoprab2 7531 naddsuc2 8718 psgnran 19501 efgcpbllemb 19741 cndis 23234 cnindis 23235 cnpdis 23236 blpnf 24341 dscopn 24517 itgcn 25803 limcnlp 25836 2sqreultlem 27415 2sqreunnltlem 27418 dfcgrg2 28847 nb3gr2nb 29368 uspgr2wlkeq 29631 upgrspthswlk 29725 wspthsnwspthsnon 29903 wpthswwlks2on 29948 1stpreima 32689 cntzsnid 33068 erler 33265 subsdrg 33297 qusxpid 33383 qsfld 33518 ressply1mon1p 33586 fsumcvg4 33986 mbfmcnt 34305 satfv0 35385 topdifinffinlem 37370 phpreu 37633 ptrest 37648 rngosn3 37953 isidlc 38044 dih1 41310 redvmptabs 42370 prjsperref 42596 lzunuz 42758 nadd1suc 43383 fsovrfovd 44000 uneqsn 44016 itsclquadeu 48724 pm4.71da 48736 i0oii 48861 io1ii 48862 |
| Copyright terms: Public domain | W3C validator |