Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.71d | Structured version Visualization version GIF version |
Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
pm4.71d | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | pm4.71 557 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: pm4.71rd 562 rabeqcda 3419 difin2 4222 resopab2 5933 ordtri3 6287 resoprab2 7371 psgnran 19038 efgcpbllemb 19276 cndis 22350 cnindis 22351 cnpdis 22352 blpnf 23458 dscopn 23635 itgcn 24914 limcnlp 24947 2sqreultlem 26500 2sqreunnltlem 26503 dfcgrg2 27128 nb3gr2nb 27654 uspgr2wlkeq 27915 upgrspthswlk 28007 wspthsnwspthsnon 28182 wpthswwlks2on 28227 1stpreima 30941 cntzsnid 31223 qusxpid 31461 fsumcvg4 31802 mbfmcnt 32135 satfv0 33220 onunel 33592 topdifinffinlem 35445 phpreu 35688 ptrest 35703 rngosn3 36009 isidlc 36100 dih1 39227 prjsperref 40366 lzunuz 40506 fsovrfovd 41506 uneqsn 41522 itsclquadeu 46011 pm4.71da 46023 i0oii 46101 io1ii 46102 |
Copyright terms: Public domain | W3C validator |