![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.71d | Structured version Visualization version GIF version |
Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
pm4.71d | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | pm4.71 556 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: pm4.71rd 561 rabeqcda 3441 difin2 4290 resopab2 6035 ordtri3 6399 onunel 6468 resoprab2 7529 psgnran 19424 efgcpbllemb 19664 cndis 23015 cnindis 23016 cnpdis 23017 blpnf 24123 dscopn 24302 itgcn 25594 limcnlp 25627 2sqreultlem 27186 2sqreunnltlem 27189 dfcgrg2 28381 nb3gr2nb 28908 uspgr2wlkeq 29170 upgrspthswlk 29262 wspthsnwspthsnon 29437 wpthswwlks2on 29482 1stpreima 32195 cntzsnid 32483 qusxpid 32749 qsfld 32886 ressply1mon1p 32931 fsumcvg4 33228 mbfmcnt 33565 satfv0 34647 topdifinffinlem 36531 phpreu 36775 ptrest 36790 rngosn3 37095 isidlc 37186 dih1 40460 prjsperref 41650 lzunuz 41808 nadd1suc 42444 naddsuc2 42445 fsovrfovd 43062 uneqsn 43078 itsclquadeu 47550 pm4.71da 47562 i0oii 47639 io1ii 47640 |
Copyright terms: Public domain | W3C validator |