![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm4.71d | Structured version Visualization version GIF version |
Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
pm4.71d | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | pm4.71 557 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm4.71rd 562 rabeqcda 3455 difin2 4320 resopab2 6065 ordtri3 6431 onunel 6500 resoprab2 7569 naddsuc2 8757 psgnran 19557 efgcpbllemb 19797 cndis 23320 cnindis 23321 cnpdis 23322 blpnf 24428 dscopn 24607 itgcn 25900 limcnlp 25933 2sqreultlem 27509 2sqreunnltlem 27512 dfcgrg2 28889 nb3gr2nb 29419 uspgr2wlkeq 29682 upgrspthswlk 29774 wspthsnwspthsnon 29949 wpthswwlks2on 29994 1stpreima 32718 cntzsnid 33045 erler 33237 qusxpid 33356 qsfld 33491 ressply1mon1p 33558 fsumcvg4 33896 mbfmcnt 34233 satfv0 35326 topdifinffinlem 37313 phpreu 37564 ptrest 37579 rngosn3 37884 isidlc 37975 dih1 41243 prjsperref 42561 lzunuz 42724 nadd1suc 43354 fsovrfovd 43971 uneqsn 43987 itsclquadeu 48511 pm4.71da 48523 i0oii 48599 io1ii 48600 |
Copyright terms: Public domain | W3C validator |