| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71d | Structured version Visualization version GIF version | ||
| Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| pm4.71d | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | pm4.71 557 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.71rd 562 rabeqcda 3408 difin2 4254 resopab2 5991 ordtri3 6347 onunel 6418 resoprab2 7472 naddsuc2 8626 psgnran 19413 efgcpbllemb 19653 cndis 23195 cnindis 23196 cnpdis 23197 blpnf 24302 dscopn 24478 itgcn 25763 limcnlp 25796 2sqreultlem 27375 2sqreunnltlem 27378 dfcgrg2 28827 nb3gr2nb 29348 uspgr2wlkeq 29610 upgrspthswlk 29702 wspthsnwspthsnon 29880 wpthswwlks2on 29925 1stpreima 32668 cntzsnid 33041 erler 33224 subsdrg 33256 qusxpid 33319 qsfld 33454 ressply1mon1p 33522 fsumcvg4 33936 mbfmcnt 34255 satfv0 35350 topdifinffinlem 37340 phpreu 37603 ptrest 37618 rngosn3 37923 isidlc 38014 dih1 41285 redvmptabs 42353 prjsperref 42599 lzunuz 42761 nadd1suc 43385 fsovrfovd 44002 uneqsn 44018 itsclquadeu 48782 pm4.71da 48794 i0oii 48924 io1ii 48925 |
| Copyright terms: Public domain | W3C validator |