| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71d | Structured version Visualization version GIF version | ||
| Description: Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| pm4.71rd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| pm4.71d | ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71rd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | pm4.71 557 | . 2 ⊢ ((𝜓 → 𝜒) ↔ (𝜓 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.71rd 562 rabeqcda 3406 difin2 4246 resopab2 5980 ordtri3 6337 onunel 6408 resoprab2 7460 naddsuc2 8611 psgnran 19422 efgcpbllemb 19662 cndis 23201 cnindis 23202 cnpdis 23203 blpnf 24307 dscopn 24483 itgcn 25768 limcnlp 25801 2sqreultlem 27380 2sqreunnltlem 27383 dfcgrg2 28836 nb3gr2nb 29357 uspgr2wlkeq 29619 upgrspthswlk 29711 wspthsnwspthsnon 29889 wpthswwlks2on 29934 1stpreima 32680 cntzsnid 33041 erler 33224 subsdrg 33256 qusxpid 33320 qsfld 33455 ressply1mon1p 33523 fsumcvg4 33955 mbfmcnt 34273 satfv0 35394 topdifinffinlem 37381 phpreu 37644 ptrest 37659 rngosn3 37964 isidlc 38055 dih1 41325 redvmptabs 42393 prjsperref 42639 lzunuz 42801 nadd1suc 43425 fsovrfovd 44042 uneqsn 44058 itsclquadeu 48809 pm4.71da 48821 i0oii 48951 io1ii 48952 |
| Copyright terms: Public domain | W3C validator |