MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.76 Structured version   Visualization version   GIF version

Theorem pm4.76 518
Description: Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.76 (((𝜑𝜓) ∧ (𝜑𝜒)) ↔ (𝜑 → (𝜓𝜒)))

Proof of Theorem pm4.76
StepHypRef Expression
1 jcab 517 . 2 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
21bicomi 223 1 (((𝜑𝜓) ∧ (𝜑𝜒)) ↔ (𝜑 → (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  fun11  6492  axgroth4  10519  dford4  40767  undmrnresiss  41101
  Copyright terms: Public domain W3C validator