MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.76 Structured version   Visualization version   GIF version

Theorem pm4.76 522
Description: Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.76 (((𝜑𝜓) ∧ (𝜑𝜒)) ↔ (𝜑 → (𝜓𝜒)))

Proof of Theorem pm4.76
StepHypRef Expression
1 jcab 521 . 2 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
21bicomi 227 1 (((𝜑𝜓) ∧ (𝜑𝜒)) ↔ (𝜑 → (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  fun11  6409  axgroth4  10239  wl-df2-3mintru2  34800  dford4  39802  undmrnresiss  40136
  Copyright terms: Public domain W3C validator