MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth4 Structured version   Visualization version   GIF version

Theorem axgroth4 10745
Description: Alternate version of the Tarski-Grothendieck Axiom. ax-ac 10372 is used to derive this version. (Contributed by NM, 16-Apr-2007.)
Assertion
Ref Expression
axgroth4 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣

Proof of Theorem axgroth4
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 axgroth3 10744 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
2 elequ2 2124 . . . . . . . . . 10 (𝑤 = 𝑣 → (𝑢𝑤𝑢𝑣))
32imbi2d 340 . . . . . . . . 9 (𝑤 = 𝑣 → ((𝑢𝑧𝑢𝑤) ↔ (𝑢𝑧𝑢𝑣)))
43albidv 1920 . . . . . . . 8 (𝑤 = 𝑣 → (∀𝑢(𝑢𝑧𝑢𝑤) ↔ ∀𝑢(𝑢𝑧𝑢𝑣)))
54cbvrexvw 3208 . . . . . . 7 (∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤) ↔ ∃𝑣𝑦𝑢(𝑢𝑧𝑢𝑣))
65anbi2i 623 . . . . . 6 ((∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑣𝑦𝑢(𝑢𝑧𝑢𝑣)))
7 r19.42v 3161 . . . . . 6 (∃𝑣𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑢(𝑢𝑧𝑢𝑣)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑣𝑦𝑢(𝑢𝑧𝑢𝑣)))
8 sseq1 3963 . . . . . . . . . . 11 (𝑢 = 𝑤 → (𝑢𝑧𝑤𝑧))
9 elequ1 2116 . . . . . . . . . . 11 (𝑢 = 𝑤 → (𝑢𝑣𝑤𝑣))
108, 9imbi12d 344 . . . . . . . . . 10 (𝑢 = 𝑤 → ((𝑢𝑧𝑢𝑣) ↔ (𝑤𝑧𝑤𝑣)))
1110cbvalvw 2036 . . . . . . . . 9 (∀𝑢(𝑢𝑧𝑢𝑣) ↔ ∀𝑤(𝑤𝑧𝑤𝑣))
1211anbi2i 623 . . . . . . . 8 ((∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑢(𝑢𝑧𝑢𝑣)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑤(𝑤𝑧𝑤𝑣)))
13 19.26 1870 . . . . . . . 8 (∀𝑤((𝑤𝑧𝑤𝑦) ∧ (𝑤𝑧𝑤𝑣)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑤(𝑤𝑧𝑤𝑣)))
14 pm4.76 518 . . . . . . . . . 10 (((𝑤𝑧𝑤𝑦) ∧ (𝑤𝑧𝑤𝑣)) ↔ (𝑤𝑧 → (𝑤𝑦𝑤𝑣)))
15 elin 3921 . . . . . . . . . . 11 (𝑤 ∈ (𝑦𝑣) ↔ (𝑤𝑦𝑤𝑣))
1615imbi2i 336 . . . . . . . . . 10 ((𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ (𝑤𝑧 → (𝑤𝑦𝑤𝑣)))
1714, 16bitr4i 278 . . . . . . . . 9 (((𝑤𝑧𝑤𝑦) ∧ (𝑤𝑧𝑤𝑣)) ↔ (𝑤𝑧𝑤 ∈ (𝑦𝑣)))
1817albii 1819 . . . . . . . 8 (∀𝑤((𝑤𝑧𝑤𝑦) ∧ (𝑤𝑧𝑤𝑣)) ↔ ∀𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)))
1912, 13, 183bitr2i 299 . . . . . . 7 ((∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑢(𝑢𝑧𝑢𝑣)) ↔ ∀𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)))
2019rexbii 3076 . . . . . 6 (∃𝑣𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑢(𝑢𝑧𝑢𝑣)) ↔ ∃𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)))
216, 7, 203bitr2i 299 . . . . 5 ((∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ↔ ∃𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)))
2221ralbii 3075 . . . 4 (∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ↔ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)))
23223anbi2i 1158 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))))
2423exbii 1848 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))))
251, 24mpbi 230 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086  wal 1538  wex 1779  wcel 2109  wral 3044  wrex 3053  cdif 3902  cin 3904  wss 3905   class class class wbr 5095  cdom 8877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556  ax-cc 10348  ax-groth 10736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-oi 9421  df-dju 9816  df-card 9854
This theorem is referenced by:  grothprim  10747
  Copyright terms: Public domain W3C validator