MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth4 Structured version   Visualization version   GIF version

Theorem axgroth4 10248
Description: Alternate version of the Tarski-Grothendieck Axiom. ax-ac 9875 is used to derive this version. (Contributed by NM, 16-Apr-2007.)
Assertion
Ref Expression
axgroth4 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣

Proof of Theorem axgroth4
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 axgroth3 10247 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
2 elequ2 2125 . . . . . . . . . 10 (𝑤 = 𝑣 → (𝑢𝑤𝑢𝑣))
32imbi2d 343 . . . . . . . . 9 (𝑤 = 𝑣 → ((𝑢𝑧𝑢𝑤) ↔ (𝑢𝑧𝑢𝑣)))
43albidv 1917 . . . . . . . 8 (𝑤 = 𝑣 → (∀𝑢(𝑢𝑧𝑢𝑤) ↔ ∀𝑢(𝑢𝑧𝑢𝑣)))
54cbvrexvw 3451 . . . . . . 7 (∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤) ↔ ∃𝑣𝑦𝑢(𝑢𝑧𝑢𝑣))
65anbi2i 624 . . . . . 6 ((∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑣𝑦𝑢(𝑢𝑧𝑢𝑣)))
7 r19.42v 3350 . . . . . 6 (∃𝑣𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑢(𝑢𝑧𝑢𝑣)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑣𝑦𝑢(𝑢𝑧𝑢𝑣)))
8 sseq1 3992 . . . . . . . . . . 11 (𝑢 = 𝑤 → (𝑢𝑧𝑤𝑧))
9 elequ1 2117 . . . . . . . . . . 11 (𝑢 = 𝑤 → (𝑢𝑣𝑤𝑣))
108, 9imbi12d 347 . . . . . . . . . 10 (𝑢 = 𝑤 → ((𝑢𝑧𝑢𝑣) ↔ (𝑤𝑧𝑤𝑣)))
1110cbvalvw 2039 . . . . . . . . 9 (∀𝑢(𝑢𝑧𝑢𝑣) ↔ ∀𝑤(𝑤𝑧𝑤𝑣))
1211anbi2i 624 . . . . . . . 8 ((∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑢(𝑢𝑧𝑢𝑣)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑤(𝑤𝑧𝑤𝑣)))
13 19.26 1867 . . . . . . . 8 (∀𝑤((𝑤𝑧𝑤𝑦) ∧ (𝑤𝑧𝑤𝑣)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑤(𝑤𝑧𝑤𝑣)))
14 pm4.76 521 . . . . . . . . . 10 (((𝑤𝑧𝑤𝑦) ∧ (𝑤𝑧𝑤𝑣)) ↔ (𝑤𝑧 → (𝑤𝑦𝑤𝑣)))
15 elin 4169 . . . . . . . . . . 11 (𝑤 ∈ (𝑦𝑣) ↔ (𝑤𝑦𝑤𝑣))
1615imbi2i 338 . . . . . . . . . 10 ((𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ (𝑤𝑧 → (𝑤𝑦𝑤𝑣)))
1714, 16bitr4i 280 . . . . . . . . 9 (((𝑤𝑧𝑤𝑦) ∧ (𝑤𝑧𝑤𝑣)) ↔ (𝑤𝑧𝑤 ∈ (𝑦𝑣)))
1817albii 1816 . . . . . . . 8 (∀𝑤((𝑤𝑧𝑤𝑦) ∧ (𝑤𝑧𝑤𝑣)) ↔ ∀𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)))
1912, 13, 183bitr2i 301 . . . . . . 7 ((∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑢(𝑢𝑧𝑢𝑣)) ↔ ∀𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)))
2019rexbii 3247 . . . . . 6 (∃𝑣𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑢(𝑢𝑧𝑢𝑣)) ↔ ∃𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)))
216, 7, 203bitr2i 301 . . . . 5 ((∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ↔ ∃𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)))
2221ralbii 3165 . . . 4 (∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ↔ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)))
23223anbi2i 1154 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))))
2423exbii 1844 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))))
251, 24mpbi 232 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083  wal 1531  wex 1776  wcel 2110  wral 3138  wrex 3139  cdif 3933  cin 3935  wss 3936   class class class wbr 5059  cdom 8501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-reg 9050  ax-inf2 9098  ax-cc 9851  ax-groth 10239
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-oi 8968  df-dju 9324  df-card 9362
This theorem is referenced by:  grothprim  10250
  Copyright terms: Public domain W3C validator