MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth4 Structured version   Visualization version   GIF version

Theorem axgroth4 10243
Description: Alternate version of the Tarski-Grothendieck Axiom. ax-ac 9870 is used to derive this version. (Contributed by NM, 16-Apr-2007.)
Assertion
Ref Expression
axgroth4 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣

Proof of Theorem axgroth4
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 axgroth3 10242 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
2 elequ2 2126 . . . . . . . . . 10 (𝑤 = 𝑣 → (𝑢𝑤𝑢𝑣))
32imbi2d 344 . . . . . . . . 9 (𝑤 = 𝑣 → ((𝑢𝑧𝑢𝑤) ↔ (𝑢𝑧𝑢𝑣)))
43albidv 1921 . . . . . . . 8 (𝑤 = 𝑣 → (∀𝑢(𝑢𝑧𝑢𝑤) ↔ ∀𝑢(𝑢𝑧𝑢𝑣)))
54cbvrexvw 3397 . . . . . . 7 (∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤) ↔ ∃𝑣𝑦𝑢(𝑢𝑧𝑢𝑣))
65anbi2i 625 . . . . . 6 ((∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑣𝑦𝑢(𝑢𝑧𝑢𝑣)))
7 r19.42v 3303 . . . . . 6 (∃𝑣𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑢(𝑢𝑧𝑢𝑣)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑣𝑦𝑢(𝑢𝑧𝑢𝑣)))
8 sseq1 3940 . . . . . . . . . . 11 (𝑢 = 𝑤 → (𝑢𝑧𝑤𝑧))
9 elequ1 2118 . . . . . . . . . . 11 (𝑢 = 𝑤 → (𝑢𝑣𝑤𝑣))
108, 9imbi12d 348 . . . . . . . . . 10 (𝑢 = 𝑤 → ((𝑢𝑧𝑢𝑣) ↔ (𝑤𝑧𝑤𝑣)))
1110cbvalvw 2043 . . . . . . . . 9 (∀𝑢(𝑢𝑧𝑢𝑣) ↔ ∀𝑤(𝑤𝑧𝑤𝑣))
1211anbi2i 625 . . . . . . . 8 ((∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑢(𝑢𝑧𝑢𝑣)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑤(𝑤𝑧𝑤𝑣)))
13 19.26 1871 . . . . . . . 8 (∀𝑤((𝑤𝑧𝑤𝑦) ∧ (𝑤𝑧𝑤𝑣)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑤(𝑤𝑧𝑤𝑣)))
14 pm4.76 522 . . . . . . . . . 10 (((𝑤𝑧𝑤𝑦) ∧ (𝑤𝑧𝑤𝑣)) ↔ (𝑤𝑧 → (𝑤𝑦𝑤𝑣)))
15 elin 3897 . . . . . . . . . . 11 (𝑤 ∈ (𝑦𝑣) ↔ (𝑤𝑦𝑤𝑣))
1615imbi2i 339 . . . . . . . . . 10 ((𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ (𝑤𝑧 → (𝑤𝑦𝑤𝑣)))
1714, 16bitr4i 281 . . . . . . . . 9 (((𝑤𝑧𝑤𝑦) ∧ (𝑤𝑧𝑤𝑣)) ↔ (𝑤𝑧𝑤 ∈ (𝑦𝑣)))
1817albii 1821 . . . . . . . 8 (∀𝑤((𝑤𝑧𝑤𝑦) ∧ (𝑤𝑧𝑤𝑣)) ↔ ∀𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)))
1912, 13, 183bitr2i 302 . . . . . . 7 ((∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑢(𝑢𝑧𝑢𝑣)) ↔ ∀𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)))
2019rexbii 3210 . . . . . 6 (∃𝑣𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∀𝑢(𝑢𝑧𝑢𝑣)) ↔ ∃𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)))
216, 7, 203bitr2i 302 . . . . 5 ((∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ↔ ∃𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)))
2221ralbii 3133 . . . 4 (∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ↔ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)))
23223anbi2i 1155 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))))
2423exbii 1849 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑢(𝑢𝑧𝑢𝑤)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))))
251, 24mpbi 233 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844  w3a 1084  wal 1536  wex 1781  wcel 2111  wral 3106  wrex 3107  cdif 3878  cin 3880  wss 3881   class class class wbr 5030  cdom 8490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088  ax-cc 9846  ax-groth 10234
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-oi 8958  df-dju 9314  df-card 9352
This theorem is referenced by:  grothprim  10245
  Copyright terms: Public domain W3C validator