Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford4 Structured version   Visualization version   GIF version

Theorem dford4 39957
Description: dford3 39956 expressed in primitives to demonstrate shortness. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
dford4 (Ord 𝑁 ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
Distinct variable group:   𝑎,𝑏,𝑐,𝑁

Proof of Theorem dford4
StepHypRef Expression
1 dford3 39956 . 2 (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑎𝑁 Tr 𝑎))
2 dftr2 5141 . . . . 5 (Tr 𝑁 ↔ ∀𝑏𝑎((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
3 19.3v 1986 . . . . . . . 8 (∀𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ((𝑎𝑁𝑏𝑎) → 𝑏𝑁))
4 ancom 464 . . . . . . . . 9 ((𝑎𝑁𝑏𝑎) ↔ (𝑏𝑎𝑎𝑁))
54imbi1i 353 . . . . . . . 8 (((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
63, 5bitri 278 . . . . . . 7 (∀𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
762albii 1822 . . . . . 6 (∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ∀𝑎𝑏((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
8 alcom 2161 . . . . . 6 (∀𝑎𝑏((𝑏𝑎𝑎𝑁) → 𝑏𝑁) ↔ ∀𝑏𝑎((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
97, 8bitri 278 . . . . 5 (∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ∀𝑏𝑎((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
102, 9bitr4i 281 . . . 4 (Tr 𝑁 ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁))
11 df-ral 3114 . . . . 5 (∀𝑎𝑁 Tr 𝑎 ↔ ∀𝑎(𝑎𝑁 → Tr 𝑎))
12 dftr2 5141 . . . . . . . . 9 (Tr 𝑎 ↔ ∀𝑐𝑏((𝑐𝑏𝑏𝑎) → 𝑐𝑎))
1312imbi2i 339 . . . . . . . 8 ((𝑎𝑁 → Tr 𝑎) ↔ (𝑎𝑁 → ∀𝑐𝑏((𝑐𝑏𝑏𝑎) → 𝑐𝑎)))
14 nfv 1915 . . . . . . . . 9 𝑐 𝑎𝑁
15 nfv 1915 . . . . . . . . 9 𝑏 𝑎𝑁
1614, 1519.21-2 2208 . . . . . . . 8 (∀𝑐𝑏(𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)) ↔ (𝑎𝑁 → ∀𝑐𝑏((𝑐𝑏𝑏𝑎) → 𝑐𝑎)))
1713, 16bitr4i 281 . . . . . . 7 ((𝑎𝑁 → Tr 𝑎) ↔ ∀𝑐𝑏(𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)))
18 impexp 454 . . . . . . . . . 10 (((𝑎𝑁 ∧ (𝑐𝑏𝑏𝑎)) → 𝑐𝑎) ↔ (𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)))
19 ancom 464 . . . . . . . . . . . . 13 ((𝑐𝑏𝑏𝑎) ↔ (𝑏𝑎𝑐𝑏))
2019anbi2i 625 . . . . . . . . . . . 12 ((𝑎𝑁 ∧ (𝑐𝑏𝑏𝑎)) ↔ (𝑎𝑁 ∧ (𝑏𝑎𝑐𝑏)))
21 anass 472 . . . . . . . . . . . 12 (((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏) ↔ (𝑎𝑁 ∧ (𝑏𝑎𝑐𝑏)))
2220, 21bitr4i 281 . . . . . . . . . . 11 ((𝑎𝑁 ∧ (𝑐𝑏𝑏𝑎)) ↔ ((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏))
2322imbi1i 353 . . . . . . . . . 10 (((𝑎𝑁 ∧ (𝑐𝑏𝑏𝑎)) → 𝑐𝑎) ↔ (((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏) → 𝑐𝑎))
2418, 23bitr3i 280 . . . . . . . . 9 ((𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)) ↔ (((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏) → 𝑐𝑎))
25 impexp 454 . . . . . . . . 9 ((((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏) → 𝑐𝑎) ↔ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
2624, 25bitri 278 . . . . . . . 8 ((𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)) ↔ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
27262albii 1822 . . . . . . 7 (∀𝑐𝑏(𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)) ↔ ∀𝑐𝑏((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
28 alcom 2161 . . . . . . 7 (∀𝑐𝑏((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)) ↔ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
2917, 27, 283bitri 300 . . . . . 6 ((𝑎𝑁 → Tr 𝑎) ↔ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
3029albii 1821 . . . . 5 (∀𝑎(𝑎𝑁 → Tr 𝑎) ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
3111, 30bitri 278 . . . 4 (∀𝑎𝑁 Tr 𝑎 ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
3210, 31anbi12i 629 . . 3 ((Tr 𝑁 ∧ ∀𝑎𝑁 Tr 𝑎) ↔ (∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))))
33 19.26 1871 . . 3 (∀𝑎(∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ (∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))))
3432, 33bitr4i 281 . 2 ((Tr 𝑁 ∧ ∀𝑎𝑁 Tr 𝑎) ↔ ∀𝑎(∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))))
35 19.26-2 1872 . . . 4 (∀𝑏𝑐(((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ (∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))))
36 pm4.76 522 . . . . 5 ((((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ ((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
37362albii 1822 . . . 4 (∀𝑏𝑐(((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
3835, 37bitr3i 280 . . 3 ((∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
3938albii 1821 . 2 (∀𝑎(∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
401, 34, 393bitri 300 1 (Ord 𝑁 ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536  wcel 2112  wral 3109  Tr wtr 5139  Ord word 6162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-un 7445  ax-reg 9044
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-tr 5140  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-ord 6166  df-on 6167  df-suc 6169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator