Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford4 Structured version   Visualization version   GIF version

Theorem dford4 42327
Description: dford3 42326 expressed in primitives to demonstrate shortness. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
dford4 (Ord 𝑁 ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
Distinct variable group:   𝑎,𝑏,𝑐,𝑁

Proof of Theorem dford4
StepHypRef Expression
1 dford3 42326 . 2 (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑎𝑁 Tr 𝑎))
2 dftr2 5260 . . . . 5 (Tr 𝑁 ↔ ∀𝑏𝑎((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
3 19.3v 1977 . . . . . . . 8 (∀𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ((𝑎𝑁𝑏𝑎) → 𝑏𝑁))
4 ancom 460 . . . . . . . . 9 ((𝑎𝑁𝑏𝑎) ↔ (𝑏𝑎𝑎𝑁))
54imbi1i 349 . . . . . . . 8 (((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
63, 5bitri 275 . . . . . . 7 (∀𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
762albii 1814 . . . . . 6 (∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ∀𝑎𝑏((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
8 alcom 2148 . . . . . 6 (∀𝑎𝑏((𝑏𝑎𝑎𝑁) → 𝑏𝑁) ↔ ∀𝑏𝑎((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
97, 8bitri 275 . . . . 5 (∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ∀𝑏𝑎((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
102, 9bitr4i 278 . . . 4 (Tr 𝑁 ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁))
11 df-ral 3056 . . . . 5 (∀𝑎𝑁 Tr 𝑎 ↔ ∀𝑎(𝑎𝑁 → Tr 𝑎))
12 dftr2 5260 . . . . . . . . 9 (Tr 𝑎 ↔ ∀𝑐𝑏((𝑐𝑏𝑏𝑎) → 𝑐𝑎))
1312imbi2i 336 . . . . . . . 8 ((𝑎𝑁 → Tr 𝑎) ↔ (𝑎𝑁 → ∀𝑐𝑏((𝑐𝑏𝑏𝑎) → 𝑐𝑎)))
14 nfv 1909 . . . . . . . . 9 𝑐 𝑎𝑁
15 nfv 1909 . . . . . . . . 9 𝑏 𝑎𝑁
1614, 1519.21-2 2194 . . . . . . . 8 (∀𝑐𝑏(𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)) ↔ (𝑎𝑁 → ∀𝑐𝑏((𝑐𝑏𝑏𝑎) → 𝑐𝑎)))
1713, 16bitr4i 278 . . . . . . 7 ((𝑎𝑁 → Tr 𝑎) ↔ ∀𝑐𝑏(𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)))
18 impexp 450 . . . . . . . . . 10 (((𝑎𝑁 ∧ (𝑐𝑏𝑏𝑎)) → 𝑐𝑎) ↔ (𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)))
19 ancom 460 . . . . . . . . . . . . 13 ((𝑐𝑏𝑏𝑎) ↔ (𝑏𝑎𝑐𝑏))
2019anbi2i 622 . . . . . . . . . . . 12 ((𝑎𝑁 ∧ (𝑐𝑏𝑏𝑎)) ↔ (𝑎𝑁 ∧ (𝑏𝑎𝑐𝑏)))
21 anass 468 . . . . . . . . . . . 12 (((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏) ↔ (𝑎𝑁 ∧ (𝑏𝑎𝑐𝑏)))
2220, 21bitr4i 278 . . . . . . . . . . 11 ((𝑎𝑁 ∧ (𝑐𝑏𝑏𝑎)) ↔ ((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏))
2322imbi1i 349 . . . . . . . . . 10 (((𝑎𝑁 ∧ (𝑐𝑏𝑏𝑎)) → 𝑐𝑎) ↔ (((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏) → 𝑐𝑎))
2418, 23bitr3i 277 . . . . . . . . 9 ((𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)) ↔ (((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏) → 𝑐𝑎))
25 impexp 450 . . . . . . . . 9 ((((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏) → 𝑐𝑎) ↔ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
2624, 25bitri 275 . . . . . . . 8 ((𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)) ↔ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
27262albii 1814 . . . . . . 7 (∀𝑐𝑏(𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)) ↔ ∀𝑐𝑏((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
28 alcom 2148 . . . . . . 7 (∀𝑐𝑏((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)) ↔ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
2917, 27, 283bitri 297 . . . . . 6 ((𝑎𝑁 → Tr 𝑎) ↔ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
3029albii 1813 . . . . 5 (∀𝑎(𝑎𝑁 → Tr 𝑎) ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
3111, 30bitri 275 . . . 4 (∀𝑎𝑁 Tr 𝑎 ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
3210, 31anbi12i 626 . . 3 ((Tr 𝑁 ∧ ∀𝑎𝑁 Tr 𝑎) ↔ (∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))))
33 19.26 1865 . . 3 (∀𝑎(∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ (∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))))
3432, 33bitr4i 278 . 2 ((Tr 𝑁 ∧ ∀𝑎𝑁 Tr 𝑎) ↔ ∀𝑎(∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))))
35 19.26-2 1866 . . . 4 (∀𝑏𝑐(((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ (∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))))
36 pm4.76 518 . . . . 5 ((((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ ((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
37362albii 1814 . . . 4 (∀𝑏𝑐(((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
3835, 37bitr3i 277 . . 3 ((∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
3938albii 1813 . 2 (∀𝑎(∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
401, 34, 393bitri 297 1 (Ord 𝑁 ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531  wcel 2098  wral 3055  Tr wtr 5258  Ord word 6356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721  ax-reg 9586
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-ord 6360  df-on 6361  df-suc 6363
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator