Step | Hyp | Ref
| Expression |
1 | | resundi 5894 |
. . 3
⊢ ( I
↾ (dom 𝐴 ∪ ran
𝐴)) = (( I ↾ dom
𝐴) ∪ ( I ↾ ran
𝐴)) |
2 | 1 | sseq1i 3945 |
. 2
⊢ (( I
↾ (dom 𝐴 ∪ ran
𝐴)) ⊆ 𝐵 ↔ (( I ↾ dom 𝐴) ∪ ( I ↾ ran 𝐴)) ⊆ 𝐵) |
3 | | unss 4114 |
. 2
⊢ ((( I
↾ dom 𝐴) ⊆
𝐵 ∧ ( I ↾ ran
𝐴) ⊆ 𝐵) ↔ (( I ↾ dom 𝐴) ∪ ( I ↾ ran 𝐴)) ⊆ 𝐵) |
4 | | relres 5909 |
. . . . . 6
⊢ Rel ( I
↾ dom 𝐴) |
5 | | ssrel 5683 |
. . . . . 6
⊢ (Rel ( I
↾ dom 𝐴) → (( I
↾ dom 𝐴) ⊆
𝐵 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ ( I ↾ dom 𝐴) → 〈𝑥, 𝑧〉 ∈ 𝐵))) |
6 | 4, 5 | ax-mp 5 |
. . . . 5
⊢ (( I
↾ dom 𝐴) ⊆
𝐵 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ ( I ↾ dom 𝐴) → 〈𝑥, 𝑧〉 ∈ 𝐵)) |
7 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
8 | 7 | eldm 5798 |
. . . . . . . . 9
⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑥𝐴𝑦) |
9 | | df-br 5071 |
. . . . . . . . . 10
⊢ (𝑥 I 𝑧 ↔ 〈𝑥, 𝑧〉 ∈ I ) |
10 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
11 | 10 | ideq 5750 |
. . . . . . . . . 10
⊢ (𝑥 I 𝑧 ↔ 𝑥 = 𝑧) |
12 | 9, 11 | bitr3i 276 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑧〉 ∈ I ↔ 𝑥 = 𝑧) |
13 | 8, 12 | anbi12ci 627 |
. . . . . . . 8
⊢ ((𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ I ) ↔ (𝑥 = 𝑧 ∧ ∃𝑦 𝑥𝐴𝑦)) |
14 | 10 | opelresi 5888 |
. . . . . . . 8
⊢
(〈𝑥, 𝑧〉 ∈ ( I ↾ dom
𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ I )) |
15 | | 19.42v 1958 |
. . . . . . . 8
⊢
(∃𝑦(𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) ↔ (𝑥 = 𝑧 ∧ ∃𝑦 𝑥𝐴𝑦)) |
16 | 13, 14, 15 | 3bitr4i 302 |
. . . . . . 7
⊢
(〈𝑥, 𝑧〉 ∈ ( I ↾ dom
𝐴) ↔ ∃𝑦(𝑥 = 𝑧 ∧ 𝑥𝐴𝑦)) |
17 | | df-br 5071 |
. . . . . . . 8
⊢ (𝑥𝐵𝑧 ↔ 〈𝑥, 𝑧〉 ∈ 𝐵) |
18 | 17 | bicomi 223 |
. . . . . . 7
⊢
(〈𝑥, 𝑧〉 ∈ 𝐵 ↔ 𝑥𝐵𝑧) |
19 | 16, 18 | imbi12i 350 |
. . . . . 6
⊢
((〈𝑥, 𝑧〉 ∈ ( I ↾ dom
𝐴) → 〈𝑥, 𝑧〉 ∈ 𝐵) ↔ (∃𝑦(𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧)) |
20 | 19 | 2albii 1824 |
. . . . 5
⊢
(∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ ( I ↾ dom 𝐴) → 〈𝑥, 𝑧〉 ∈ 𝐵) ↔ ∀𝑥∀𝑧(∃𝑦(𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧)) |
21 | | 19.23v 1946 |
. . . . . . . 8
⊢
(∀𝑦((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ (∃𝑦(𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧)) |
22 | 21 | bicomi 223 |
. . . . . . 7
⊢
((∃𝑦(𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑦((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧)) |
23 | 22 | 2albii 1824 |
. . . . . 6
⊢
(∀𝑥∀𝑧(∃𝑦(𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑥∀𝑧∀𝑦((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧)) |
24 | | alcom 2158 |
. . . . . . . 8
⊢
(∀𝑧∀𝑦((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑦∀𝑧((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧)) |
25 | | ancomst 464 |
. . . . . . . . . . . 12
⊢ (((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ((𝑥𝐴𝑦 ∧ 𝑥 = 𝑧) → 𝑥𝐵𝑧)) |
26 | | impexp 450 |
. . . . . . . . . . . 12
⊢ (((𝑥𝐴𝑦 ∧ 𝑥 = 𝑧) → 𝑥𝐵𝑧) ↔ (𝑥𝐴𝑦 → (𝑥 = 𝑧 → 𝑥𝐵𝑧))) |
27 | 25, 26 | bitri 274 |
. . . . . . . . . . 11
⊢ (((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ (𝑥𝐴𝑦 → (𝑥 = 𝑧 → 𝑥𝐵𝑧))) |
28 | 27 | albii 1823 |
. . . . . . . . . 10
⊢
(∀𝑧((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑧(𝑥𝐴𝑦 → (𝑥 = 𝑧 → 𝑥𝐵𝑧))) |
29 | | 19.21v 1943 |
. . . . . . . . . 10
⊢
(∀𝑧(𝑥𝐴𝑦 → (𝑥 = 𝑧 → 𝑥𝐵𝑧)) ↔ (𝑥𝐴𝑦 → ∀𝑧(𝑥 = 𝑧 → 𝑥𝐵𝑧))) |
30 | | equcom 2022 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 ↔ 𝑧 = 𝑥) |
31 | 30 | imbi1i 349 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑧 → 𝑥𝐵𝑧) ↔ (𝑧 = 𝑥 → 𝑥𝐵𝑧)) |
32 | 31 | albii 1823 |
. . . . . . . . . . . 12
⊢
(∀𝑧(𝑥 = 𝑧 → 𝑥𝐵𝑧) ↔ ∀𝑧(𝑧 = 𝑥 → 𝑥𝐵𝑧)) |
33 | | breq2 5074 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (𝑥𝐵𝑧 ↔ 𝑥𝐵𝑥)) |
34 | 33 | equsalvw 2008 |
. . . . . . . . . . . 12
⊢
(∀𝑧(𝑧 = 𝑥 → 𝑥𝐵𝑧) ↔ 𝑥𝐵𝑥) |
35 | 32, 34 | bitri 274 |
. . . . . . . . . . 11
⊢
(∀𝑧(𝑥 = 𝑧 → 𝑥𝐵𝑧) ↔ 𝑥𝐵𝑥) |
36 | 35 | imbi2i 335 |
. . . . . . . . . 10
⊢ ((𝑥𝐴𝑦 → ∀𝑧(𝑥 = 𝑧 → 𝑥𝐵𝑧)) ↔ (𝑥𝐴𝑦 → 𝑥𝐵𝑥)) |
37 | 28, 29, 36 | 3bitri 296 |
. . . . . . . . 9
⊢
(∀𝑧((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ (𝑥𝐴𝑦 → 𝑥𝐵𝑥)) |
38 | 37 | albii 1823 |
. . . . . . . 8
⊢
(∀𝑦∀𝑧((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑥)) |
39 | 24, 38 | bitri 274 |
. . . . . . 7
⊢
(∀𝑧∀𝑦((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑥)) |
40 | 39 | albii 1823 |
. . . . . 6
⊢
(∀𝑥∀𝑧∀𝑦((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑥)) |
41 | 23, 40 | bitri 274 |
. . . . 5
⊢
(∀𝑥∀𝑧(∃𝑦(𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑥)) |
42 | 6, 20, 41 | 3bitri 296 |
. . . 4
⊢ (( I
↾ dom 𝐴) ⊆
𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑥)) |
43 | | relres 5909 |
. . . . . 6
⊢ Rel ( I
↾ ran 𝐴) |
44 | | ssrel 5683 |
. . . . . 6
⊢ (Rel ( I
↾ ran 𝐴) → (( I
↾ ran 𝐴) ⊆
𝐵 ↔ ∀𝑦∀𝑧(〈𝑦, 𝑧〉 ∈ ( I ↾ ran 𝐴) → 〈𝑦, 𝑧〉 ∈ 𝐵))) |
45 | 43, 44 | ax-mp 5 |
. . . . 5
⊢ (( I
↾ ran 𝐴) ⊆
𝐵 ↔ ∀𝑦∀𝑧(〈𝑦, 𝑧〉 ∈ ( I ↾ ran 𝐴) → 〈𝑦, 𝑧〉 ∈ 𝐵)) |
46 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
47 | 46 | elrn 5791 |
. . . . . . . . 9
⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥 𝑥𝐴𝑦) |
48 | | df-br 5071 |
. . . . . . . . . 10
⊢ (𝑦 I 𝑧 ↔ 〈𝑦, 𝑧〉 ∈ I ) |
49 | 10 | ideq 5750 |
. . . . . . . . . 10
⊢ (𝑦 I 𝑧 ↔ 𝑦 = 𝑧) |
50 | 48, 49 | bitr3i 276 |
. . . . . . . . 9
⊢
(〈𝑦, 𝑧〉 ∈ I ↔ 𝑦 = 𝑧) |
51 | 47, 50 | anbi12ci 627 |
. . . . . . . 8
⊢ ((𝑦 ∈ ran 𝐴 ∧ 〈𝑦, 𝑧〉 ∈ I ) ↔ (𝑦 = 𝑧 ∧ ∃𝑥 𝑥𝐴𝑦)) |
52 | 10 | opelresi 5888 |
. . . . . . . 8
⊢
(〈𝑦, 𝑧〉 ∈ ( I ↾ ran
𝐴) ↔ (𝑦 ∈ ran 𝐴 ∧ 〈𝑦, 𝑧〉 ∈ I )) |
53 | | 19.42v 1958 |
. . . . . . . 8
⊢
(∃𝑥(𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) ↔ (𝑦 = 𝑧 ∧ ∃𝑥 𝑥𝐴𝑦)) |
54 | 51, 52, 53 | 3bitr4i 302 |
. . . . . . 7
⊢
(〈𝑦, 𝑧〉 ∈ ( I ↾ ran
𝐴) ↔ ∃𝑥(𝑦 = 𝑧 ∧ 𝑥𝐴𝑦)) |
55 | | df-br 5071 |
. . . . . . . 8
⊢ (𝑦𝐵𝑧 ↔ 〈𝑦, 𝑧〉 ∈ 𝐵) |
56 | 55 | bicomi 223 |
. . . . . . 7
⊢
(〈𝑦, 𝑧〉 ∈ 𝐵 ↔ 𝑦𝐵𝑧) |
57 | 54, 56 | imbi12i 350 |
. . . . . 6
⊢
((〈𝑦, 𝑧〉 ∈ ( I ↾ ran
𝐴) → 〈𝑦, 𝑧〉 ∈ 𝐵) ↔ (∃𝑥(𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧)) |
58 | 57 | 2albii 1824 |
. . . . 5
⊢
(∀𝑦∀𝑧(〈𝑦, 𝑧〉 ∈ ( I ↾ ran 𝐴) → 〈𝑦, 𝑧〉 ∈ 𝐵) ↔ ∀𝑦∀𝑧(∃𝑥(𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧)) |
59 | | 19.23v 1946 |
. . . . . . . 8
⊢
(∀𝑥((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ (∃𝑥(𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧)) |
60 | 59 | bicomi 223 |
. . . . . . 7
⊢
((∃𝑥(𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑥((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧)) |
61 | 60 | 2albii 1824 |
. . . . . 6
⊢
(∀𝑦∀𝑧(∃𝑥(𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑦∀𝑧∀𝑥((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧)) |
62 | | alrot3 2159 |
. . . . . 6
⊢
(∀𝑥∀𝑦∀𝑧((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑦∀𝑧∀𝑥((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧)) |
63 | | ancomst 464 |
. . . . . . . . . 10
⊢ (((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ((𝑥𝐴𝑦 ∧ 𝑦 = 𝑧) → 𝑦𝐵𝑧)) |
64 | | impexp 450 |
. . . . . . . . . 10
⊢ (((𝑥𝐴𝑦 ∧ 𝑦 = 𝑧) → 𝑦𝐵𝑧) ↔ (𝑥𝐴𝑦 → (𝑦 = 𝑧 → 𝑦𝐵𝑧))) |
65 | 63, 64 | bitri 274 |
. . . . . . . . 9
⊢ (((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ (𝑥𝐴𝑦 → (𝑦 = 𝑧 → 𝑦𝐵𝑧))) |
66 | 65 | albii 1823 |
. . . . . . . 8
⊢
(∀𝑧((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑧(𝑥𝐴𝑦 → (𝑦 = 𝑧 → 𝑦𝐵𝑧))) |
67 | | 19.21v 1943 |
. . . . . . . 8
⊢
(∀𝑧(𝑥𝐴𝑦 → (𝑦 = 𝑧 → 𝑦𝐵𝑧)) ↔ (𝑥𝐴𝑦 → ∀𝑧(𝑦 = 𝑧 → 𝑦𝐵𝑧))) |
68 | | equcom 2022 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 ↔ 𝑧 = 𝑦) |
69 | 68 | imbi1i 349 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝑧 → 𝑦𝐵𝑧) ↔ (𝑧 = 𝑦 → 𝑦𝐵𝑧)) |
70 | 69 | albii 1823 |
. . . . . . . . . 10
⊢
(∀𝑧(𝑦 = 𝑧 → 𝑦𝐵𝑧) ↔ ∀𝑧(𝑧 = 𝑦 → 𝑦𝐵𝑧)) |
71 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → (𝑦𝐵𝑧 ↔ 𝑦𝐵𝑦)) |
72 | 71 | equsalvw 2008 |
. . . . . . . . . 10
⊢
(∀𝑧(𝑧 = 𝑦 → 𝑦𝐵𝑧) ↔ 𝑦𝐵𝑦) |
73 | 70, 72 | bitri 274 |
. . . . . . . . 9
⊢
(∀𝑧(𝑦 = 𝑧 → 𝑦𝐵𝑧) ↔ 𝑦𝐵𝑦) |
74 | 73 | imbi2i 335 |
. . . . . . . 8
⊢ ((𝑥𝐴𝑦 → ∀𝑧(𝑦 = 𝑧 → 𝑦𝐵𝑧)) ↔ (𝑥𝐴𝑦 → 𝑦𝐵𝑦)) |
75 | 66, 67, 74 | 3bitri 296 |
. . . . . . 7
⊢
(∀𝑧((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ (𝑥𝐴𝑦 → 𝑦𝐵𝑦)) |
76 | 75 | 2albii 1824 |
. . . . . 6
⊢
(∀𝑥∀𝑦∀𝑧((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑦𝐵𝑦)) |
77 | 61, 62, 76 | 3bitr2i 298 |
. . . . 5
⊢
(∀𝑦∀𝑧(∃𝑥(𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑦𝐵𝑦)) |
78 | 45, 58, 77 | 3bitri 296 |
. . . 4
⊢ (( I
↾ ran 𝐴) ⊆
𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑦𝐵𝑦)) |
79 | 42, 78 | anbi12i 626 |
. . 3
⊢ ((( I
↾ dom 𝐴) ⊆
𝐵 ∧ ( I ↾ ran
𝐴) ⊆ 𝐵) ↔ (∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑥) ∧ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑦𝐵𝑦))) |
80 | | 19.26-2 1875 |
. . 3
⊢
(∀𝑥∀𝑦((𝑥𝐴𝑦 → 𝑥𝐵𝑥) ∧ (𝑥𝐴𝑦 → 𝑦𝐵𝑦)) ↔ (∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑥) ∧ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑦𝐵𝑦))) |
81 | | pm4.76 518 |
. . . 4
⊢ (((𝑥𝐴𝑦 → 𝑥𝐵𝑥) ∧ (𝑥𝐴𝑦 → 𝑦𝐵𝑦)) ↔ (𝑥𝐴𝑦 → (𝑥𝐵𝑥 ∧ 𝑦𝐵𝑦))) |
82 | 81 | 2albii 1824 |
. . 3
⊢
(∀𝑥∀𝑦((𝑥𝐴𝑦 → 𝑥𝐵𝑥) ∧ (𝑥𝐴𝑦 → 𝑦𝐵𝑦)) ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐵𝑥 ∧ 𝑦𝐵𝑦))) |
83 | 79, 80, 82 | 3bitr2i 298 |
. 2
⊢ ((( I
↾ dom 𝐴) ⊆
𝐵 ∧ ( I ↾ ran
𝐴) ⊆ 𝐵) ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐵𝑥 ∧ 𝑦𝐵𝑦))) |
84 | 2, 3, 83 | 3bitr2i 298 |
1
⊢ (( I
↾ (dom 𝐴 ∪ ran
𝐴)) ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐵𝑥 ∧ 𝑦𝐵𝑦))) |