| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | resundi 6010 | . . 3
⊢ ( I
↾ (dom 𝐴 ∪ ran
𝐴)) = (( I ↾ dom
𝐴) ∪ ( I ↾ ran
𝐴)) | 
| 2 | 1 | sseq1i 4011 | . 2
⊢ (( I
↾ (dom 𝐴 ∪ ran
𝐴)) ⊆ 𝐵 ↔ (( I ↾ dom 𝐴) ∪ ( I ↾ ran 𝐴)) ⊆ 𝐵) | 
| 3 |  | unss 4189 | . 2
⊢ ((( I
↾ dom 𝐴) ⊆
𝐵 ∧ ( I ↾ ran
𝐴) ⊆ 𝐵) ↔ (( I ↾ dom 𝐴) ∪ ( I ↾ ran 𝐴)) ⊆ 𝐵) | 
| 4 |  | relres 6022 | . . . . . 6
⊢ Rel ( I
↾ dom 𝐴) | 
| 5 |  | ssrel 5791 | . . . . . 6
⊢ (Rel ( I
↾ dom 𝐴) → (( I
↾ dom 𝐴) ⊆
𝐵 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ ( I ↾ dom 𝐴) → 〈𝑥, 𝑧〉 ∈ 𝐵))) | 
| 6 | 4, 5 | ax-mp 5 | . . . . 5
⊢ (( I
↾ dom 𝐴) ⊆
𝐵 ↔ ∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ ( I ↾ dom 𝐴) → 〈𝑥, 𝑧〉 ∈ 𝐵)) | 
| 7 |  | vex 3483 | . . . . . . . . . 10
⊢ 𝑥 ∈ V | 
| 8 | 7 | eldm 5910 | . . . . . . . . 9
⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑥𝐴𝑦) | 
| 9 |  | df-br 5143 | . . . . . . . . . 10
⊢ (𝑥 I 𝑧 ↔ 〈𝑥, 𝑧〉 ∈ I ) | 
| 10 |  | vex 3483 | . . . . . . . . . . 11
⊢ 𝑧 ∈ V | 
| 11 | 10 | ideq 5862 | . . . . . . . . . 10
⊢ (𝑥 I 𝑧 ↔ 𝑥 = 𝑧) | 
| 12 | 9, 11 | bitr3i 277 | . . . . . . . . 9
⊢
(〈𝑥, 𝑧〉 ∈ I ↔ 𝑥 = 𝑧) | 
| 13 | 8, 12 | anbi12ci 629 | . . . . . . . 8
⊢ ((𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ I ) ↔ (𝑥 = 𝑧 ∧ ∃𝑦 𝑥𝐴𝑦)) | 
| 14 | 10 | opelresi 6004 | . . . . . . . 8
⊢
(〈𝑥, 𝑧〉 ∈ ( I ↾ dom
𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ I )) | 
| 15 |  | 19.42v 1952 | . . . . . . . 8
⊢
(∃𝑦(𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) ↔ (𝑥 = 𝑧 ∧ ∃𝑦 𝑥𝐴𝑦)) | 
| 16 | 13, 14, 15 | 3bitr4i 303 | . . . . . . 7
⊢
(〈𝑥, 𝑧〉 ∈ ( I ↾ dom
𝐴) ↔ ∃𝑦(𝑥 = 𝑧 ∧ 𝑥𝐴𝑦)) | 
| 17 |  | df-br 5143 | . . . . . . . 8
⊢ (𝑥𝐵𝑧 ↔ 〈𝑥, 𝑧〉 ∈ 𝐵) | 
| 18 | 17 | bicomi 224 | . . . . . . 7
⊢
(〈𝑥, 𝑧〉 ∈ 𝐵 ↔ 𝑥𝐵𝑧) | 
| 19 | 16, 18 | imbi12i 350 | . . . . . 6
⊢
((〈𝑥, 𝑧〉 ∈ ( I ↾ dom
𝐴) → 〈𝑥, 𝑧〉 ∈ 𝐵) ↔ (∃𝑦(𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧)) | 
| 20 | 19 | 2albii 1819 | . . . . 5
⊢
(∀𝑥∀𝑧(〈𝑥, 𝑧〉 ∈ ( I ↾ dom 𝐴) → 〈𝑥, 𝑧〉 ∈ 𝐵) ↔ ∀𝑥∀𝑧(∃𝑦(𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧)) | 
| 21 |  | 19.23v 1941 | . . . . . . . 8
⊢
(∀𝑦((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ (∃𝑦(𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧)) | 
| 22 | 21 | bicomi 224 | . . . . . . 7
⊢
((∃𝑦(𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑦((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧)) | 
| 23 | 22 | 2albii 1819 | . . . . . 6
⊢
(∀𝑥∀𝑧(∃𝑦(𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑥∀𝑧∀𝑦((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧)) | 
| 24 |  | alcom 2158 | . . . . . . . 8
⊢
(∀𝑧∀𝑦((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑦∀𝑧((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧)) | 
| 25 |  | ancomst 464 | . . . . . . . . . . . 12
⊢ (((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ((𝑥𝐴𝑦 ∧ 𝑥 = 𝑧) → 𝑥𝐵𝑧)) | 
| 26 |  | impexp 450 | . . . . . . . . . . . 12
⊢ (((𝑥𝐴𝑦 ∧ 𝑥 = 𝑧) → 𝑥𝐵𝑧) ↔ (𝑥𝐴𝑦 → (𝑥 = 𝑧 → 𝑥𝐵𝑧))) | 
| 27 | 25, 26 | bitri 275 | . . . . . . . . . . 11
⊢ (((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ (𝑥𝐴𝑦 → (𝑥 = 𝑧 → 𝑥𝐵𝑧))) | 
| 28 | 27 | albii 1818 | . . . . . . . . . 10
⊢
(∀𝑧((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑧(𝑥𝐴𝑦 → (𝑥 = 𝑧 → 𝑥𝐵𝑧))) | 
| 29 |  | 19.21v 1938 | . . . . . . . . . 10
⊢
(∀𝑧(𝑥𝐴𝑦 → (𝑥 = 𝑧 → 𝑥𝐵𝑧)) ↔ (𝑥𝐴𝑦 → ∀𝑧(𝑥 = 𝑧 → 𝑥𝐵𝑧))) | 
| 30 |  | equcom 2016 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 ↔ 𝑧 = 𝑥) | 
| 31 | 30 | imbi1i 349 | . . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑧 → 𝑥𝐵𝑧) ↔ (𝑧 = 𝑥 → 𝑥𝐵𝑧)) | 
| 32 | 31 | albii 1818 | . . . . . . . . . . . 12
⊢
(∀𝑧(𝑥 = 𝑧 → 𝑥𝐵𝑧) ↔ ∀𝑧(𝑧 = 𝑥 → 𝑥𝐵𝑧)) | 
| 33 |  | breq2 5146 | . . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (𝑥𝐵𝑧 ↔ 𝑥𝐵𝑥)) | 
| 34 | 33 | equsalvw 2002 | . . . . . . . . . . . 12
⊢
(∀𝑧(𝑧 = 𝑥 → 𝑥𝐵𝑧) ↔ 𝑥𝐵𝑥) | 
| 35 | 32, 34 | bitri 275 | . . . . . . . . . . 11
⊢
(∀𝑧(𝑥 = 𝑧 → 𝑥𝐵𝑧) ↔ 𝑥𝐵𝑥) | 
| 36 | 35 | imbi2i 336 | . . . . . . . . . 10
⊢ ((𝑥𝐴𝑦 → ∀𝑧(𝑥 = 𝑧 → 𝑥𝐵𝑧)) ↔ (𝑥𝐴𝑦 → 𝑥𝐵𝑥)) | 
| 37 | 28, 29, 36 | 3bitri 297 | . . . . . . . . 9
⊢
(∀𝑧((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ (𝑥𝐴𝑦 → 𝑥𝐵𝑥)) | 
| 38 | 37 | albii 1818 | . . . . . . . 8
⊢
(∀𝑦∀𝑧((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑥)) | 
| 39 | 24, 38 | bitri 275 | . . . . . . 7
⊢
(∀𝑧∀𝑦((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑥)) | 
| 40 | 39 | albii 1818 | . . . . . 6
⊢
(∀𝑥∀𝑧∀𝑦((𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑥)) | 
| 41 | 23, 40 | bitri 275 | . . . . 5
⊢
(∀𝑥∀𝑧(∃𝑦(𝑥 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑥𝐵𝑧) ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑥)) | 
| 42 | 6, 20, 41 | 3bitri 297 | . . . 4
⊢ (( I
↾ dom 𝐴) ⊆
𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑥)) | 
| 43 |  | relres 6022 | . . . . . 6
⊢ Rel ( I
↾ ran 𝐴) | 
| 44 |  | ssrel 5791 | . . . . . 6
⊢ (Rel ( I
↾ ran 𝐴) → (( I
↾ ran 𝐴) ⊆
𝐵 ↔ ∀𝑦∀𝑧(〈𝑦, 𝑧〉 ∈ ( I ↾ ran 𝐴) → 〈𝑦, 𝑧〉 ∈ 𝐵))) | 
| 45 | 43, 44 | ax-mp 5 | . . . . 5
⊢ (( I
↾ ran 𝐴) ⊆
𝐵 ↔ ∀𝑦∀𝑧(〈𝑦, 𝑧〉 ∈ ( I ↾ ran 𝐴) → 〈𝑦, 𝑧〉 ∈ 𝐵)) | 
| 46 |  | vex 3483 | . . . . . . . . . 10
⊢ 𝑦 ∈ V | 
| 47 | 46 | elrn 5903 | . . . . . . . . 9
⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥 𝑥𝐴𝑦) | 
| 48 |  | df-br 5143 | . . . . . . . . . 10
⊢ (𝑦 I 𝑧 ↔ 〈𝑦, 𝑧〉 ∈ I ) | 
| 49 | 10 | ideq 5862 | . . . . . . . . . 10
⊢ (𝑦 I 𝑧 ↔ 𝑦 = 𝑧) | 
| 50 | 48, 49 | bitr3i 277 | . . . . . . . . 9
⊢
(〈𝑦, 𝑧〉 ∈ I ↔ 𝑦 = 𝑧) | 
| 51 | 47, 50 | anbi12ci 629 | . . . . . . . 8
⊢ ((𝑦 ∈ ran 𝐴 ∧ 〈𝑦, 𝑧〉 ∈ I ) ↔ (𝑦 = 𝑧 ∧ ∃𝑥 𝑥𝐴𝑦)) | 
| 52 | 10 | opelresi 6004 | . . . . . . . 8
⊢
(〈𝑦, 𝑧〉 ∈ ( I ↾ ran
𝐴) ↔ (𝑦 ∈ ran 𝐴 ∧ 〈𝑦, 𝑧〉 ∈ I )) | 
| 53 |  | 19.42v 1952 | . . . . . . . 8
⊢
(∃𝑥(𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) ↔ (𝑦 = 𝑧 ∧ ∃𝑥 𝑥𝐴𝑦)) | 
| 54 | 51, 52, 53 | 3bitr4i 303 | . . . . . . 7
⊢
(〈𝑦, 𝑧〉 ∈ ( I ↾ ran
𝐴) ↔ ∃𝑥(𝑦 = 𝑧 ∧ 𝑥𝐴𝑦)) | 
| 55 |  | df-br 5143 | . . . . . . . 8
⊢ (𝑦𝐵𝑧 ↔ 〈𝑦, 𝑧〉 ∈ 𝐵) | 
| 56 | 55 | bicomi 224 | . . . . . . 7
⊢
(〈𝑦, 𝑧〉 ∈ 𝐵 ↔ 𝑦𝐵𝑧) | 
| 57 | 54, 56 | imbi12i 350 | . . . . . 6
⊢
((〈𝑦, 𝑧〉 ∈ ( I ↾ ran
𝐴) → 〈𝑦, 𝑧〉 ∈ 𝐵) ↔ (∃𝑥(𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧)) | 
| 58 | 57 | 2albii 1819 | . . . . 5
⊢
(∀𝑦∀𝑧(〈𝑦, 𝑧〉 ∈ ( I ↾ ran 𝐴) → 〈𝑦, 𝑧〉 ∈ 𝐵) ↔ ∀𝑦∀𝑧(∃𝑥(𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧)) | 
| 59 |  | 19.23v 1941 | . . . . . . . 8
⊢
(∀𝑥((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ (∃𝑥(𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧)) | 
| 60 | 59 | bicomi 224 | . . . . . . 7
⊢
((∃𝑥(𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑥((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧)) | 
| 61 | 60 | 2albii 1819 | . . . . . 6
⊢
(∀𝑦∀𝑧(∃𝑥(𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑦∀𝑧∀𝑥((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧)) | 
| 62 |  | alrot3 2159 | . . . . . 6
⊢
(∀𝑥∀𝑦∀𝑧((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑦∀𝑧∀𝑥((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧)) | 
| 63 |  | ancomst 464 | . . . . . . . . . 10
⊢ (((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ((𝑥𝐴𝑦 ∧ 𝑦 = 𝑧) → 𝑦𝐵𝑧)) | 
| 64 |  | impexp 450 | . . . . . . . . . 10
⊢ (((𝑥𝐴𝑦 ∧ 𝑦 = 𝑧) → 𝑦𝐵𝑧) ↔ (𝑥𝐴𝑦 → (𝑦 = 𝑧 → 𝑦𝐵𝑧))) | 
| 65 | 63, 64 | bitri 275 | . . . . . . . . 9
⊢ (((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ (𝑥𝐴𝑦 → (𝑦 = 𝑧 → 𝑦𝐵𝑧))) | 
| 66 | 65 | albii 1818 | . . . . . . . 8
⊢
(∀𝑧((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑧(𝑥𝐴𝑦 → (𝑦 = 𝑧 → 𝑦𝐵𝑧))) | 
| 67 |  | 19.21v 1938 | . . . . . . . 8
⊢
(∀𝑧(𝑥𝐴𝑦 → (𝑦 = 𝑧 → 𝑦𝐵𝑧)) ↔ (𝑥𝐴𝑦 → ∀𝑧(𝑦 = 𝑧 → 𝑦𝐵𝑧))) | 
| 68 |  | equcom 2016 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 ↔ 𝑧 = 𝑦) | 
| 69 | 68 | imbi1i 349 | . . . . . . . . . . 11
⊢ ((𝑦 = 𝑧 → 𝑦𝐵𝑧) ↔ (𝑧 = 𝑦 → 𝑦𝐵𝑧)) | 
| 70 | 69 | albii 1818 | . . . . . . . . . 10
⊢
(∀𝑧(𝑦 = 𝑧 → 𝑦𝐵𝑧) ↔ ∀𝑧(𝑧 = 𝑦 → 𝑦𝐵𝑧)) | 
| 71 |  | breq2 5146 | . . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → (𝑦𝐵𝑧 ↔ 𝑦𝐵𝑦)) | 
| 72 | 71 | equsalvw 2002 | . . . . . . . . . 10
⊢
(∀𝑧(𝑧 = 𝑦 → 𝑦𝐵𝑧) ↔ 𝑦𝐵𝑦) | 
| 73 | 70, 72 | bitri 275 | . . . . . . . . 9
⊢
(∀𝑧(𝑦 = 𝑧 → 𝑦𝐵𝑧) ↔ 𝑦𝐵𝑦) | 
| 74 | 73 | imbi2i 336 | . . . . . . . 8
⊢ ((𝑥𝐴𝑦 → ∀𝑧(𝑦 = 𝑧 → 𝑦𝐵𝑧)) ↔ (𝑥𝐴𝑦 → 𝑦𝐵𝑦)) | 
| 75 | 66, 67, 74 | 3bitri 297 | . . . . . . 7
⊢
(∀𝑧((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ (𝑥𝐴𝑦 → 𝑦𝐵𝑦)) | 
| 76 | 75 | 2albii 1819 | . . . . . 6
⊢
(∀𝑥∀𝑦∀𝑧((𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑦𝐵𝑦)) | 
| 77 | 61, 62, 76 | 3bitr2i 299 | . . . . 5
⊢
(∀𝑦∀𝑧(∃𝑥(𝑦 = 𝑧 ∧ 𝑥𝐴𝑦) → 𝑦𝐵𝑧) ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑦𝐵𝑦)) | 
| 78 | 45, 58, 77 | 3bitri 297 | . . . 4
⊢ (( I
↾ ran 𝐴) ⊆
𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑦𝐵𝑦)) | 
| 79 | 42, 78 | anbi12i 628 | . . 3
⊢ ((( I
↾ dom 𝐴) ⊆
𝐵 ∧ ( I ↾ ran
𝐴) ⊆ 𝐵) ↔ (∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑥) ∧ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑦𝐵𝑦))) | 
| 80 |  | 19.26-2 1870 | . . 3
⊢
(∀𝑥∀𝑦((𝑥𝐴𝑦 → 𝑥𝐵𝑥) ∧ (𝑥𝐴𝑦 → 𝑦𝐵𝑦)) ↔ (∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑥𝐵𝑥) ∧ ∀𝑥∀𝑦(𝑥𝐴𝑦 → 𝑦𝐵𝑦))) | 
| 81 |  | pm4.76 518 | . . . 4
⊢ (((𝑥𝐴𝑦 → 𝑥𝐵𝑥) ∧ (𝑥𝐴𝑦 → 𝑦𝐵𝑦)) ↔ (𝑥𝐴𝑦 → (𝑥𝐵𝑥 ∧ 𝑦𝐵𝑦))) | 
| 82 | 81 | 2albii 1819 | . . 3
⊢
(∀𝑥∀𝑦((𝑥𝐴𝑦 → 𝑥𝐵𝑥) ∧ (𝑥𝐴𝑦 → 𝑦𝐵𝑦)) ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐵𝑥 ∧ 𝑦𝐵𝑦))) | 
| 83 | 79, 80, 82 | 3bitr2i 299 | . 2
⊢ ((( I
↾ dom 𝐴) ⊆
𝐵 ∧ ( I ↾ ran
𝐴) ⊆ 𝐵) ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐵𝑥 ∧ 𝑦𝐵𝑦))) | 
| 84 | 2, 3, 83 | 3bitr2i 299 | 1
⊢ (( I
↾ (dom 𝐴 ∪ ran
𝐴)) ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐵𝑥 ∧ 𝑦𝐵𝑦))) |