Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orbi12i | Structured version Visualization version GIF version |
Description: Infer the disjunction of two equivalences. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
orbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
orbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
orbi12i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
2 | 1 | orbi2i 911 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜃)) |
3 | orbi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
4 | 3 | orbi1i 912 | . 2 ⊢ ((𝜑 ∨ 𝜃) ↔ (𝜓 ∨ 𝜃)) |
5 | 2, 4 | bitri 275 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 846 |
This theorem is referenced by: pm4.78 933 andir 1007 anddi 1009 cases 1041 cases2 1046 3orbi123i 1156 3or6 1447 noran 1531 cadcoma 1611 eeor 2328 neorian 3037 sspsstri 4043 rexun 4130 elsymdif 4187 indi 4213 unabw 4237 unab 4238 dfnf5 4317 ab0orv 4318 inundif 4418 dfpr2 4584 ssunsn 4767 ssunpr 4771 sspr 4772 sstp 4773 prneimg 4791 prnebg 4792 pwpr 4838 pwtp 4839 uniprOLD 4863 uniun 4870 iunun 5029 iunxun 5030 brun 5132 zfpair 5353 opthneg 5409 propeqop 5434 opthprc 5662 dmopab2rex 5839 xpeq0 6078 difxp 6082 ordtri2or3 6380 ftpg 7060 ordunpr 7705 mpoxneldm 8059 tpostpos 8093 frrlem13 8145 oarec 8424 brdom2 8803 modom 9065 dfsup2 9247 wemapsolem 9353 djuunxp 9723 leweon 9813 kmlem16 9967 fin23lem40 10153 axpre-lttri 10967 nn0n0n1ge2b 12347 elnn0z 12378 fz0 13317 sqeqori 13976 hashtpg 14244 swrdnnn0nd 14414 swrdnd0 14415 cbvsum 15452 cbvprod 15670 rpnnen2lem12 15979 lcmfpr 16377 pythagtriplem2 16563 pythagtrip 16580 mreexexd 17402 smndex1basss 18589 smndex1mgm 18591 smndex1n0mnd 18596 cnfldfun 20654 ppttop 22202 fixufil 23118 alexsubALTlem2 23244 alexsubALTlem3 23245 alexsubALTlem4 23246 dyaddisj 24805 clwwlkneq0 28438 ofpreima2 31048 odutos 31291 trleile 31294 prmidl2 31661 prmidl0 31671 smatrcl 31791 ordtconnlem1 31919 sitgaddlemb 32360 satfvsuclem2 33367 satfvsucsuc 33372 satfdm 33376 satf0 33379 satffunlem2lem1 33411 dmopab3rexdif 33412 quad3 33673 nepss 33707 dfso2 33767 dfon2lem4 33807 dfon2lem5 33808 xpord2pred 33837 xpord3pred 33843 noetalem1 33989 dfon3 34239 brcup 34286 dfrdg4 34298 hfun 34525 bj-df-ifc 34806 bj-eltag 35211 bj-projun 35228 poimirlem22 35843 poimirlem31 35852 poimirlem32 35853 ispridl2 36240 smprngopr 36254 isdmn3 36276 sbcori 36311 tsbi4 36338 4atlem3 37652 elpadd 37855 paddasslem17 37892 cdlemg31b0N 38750 cdlemg31b0a 38751 cdlemh 38873 jm2.23 40856 ifpim123g 41145 ifpananb 41151 rp-isfinite6 41163 iunrelexp0 41348 clsk1indlem3 41691 aovov0bi 44746 zeoALTV 45180 divgcdoddALTV 45192 rrx2pnedifcoorneor 46120 line2xlem 46157 |
Copyright terms: Public domain | W3C validator |