|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm5.3 | Structured version Visualization version GIF version | ||
| Description: Theorem *5.3 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.) | 
| Ref | Expression | 
|---|---|
| pm5.3 | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | biantrurd 532 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ (𝜑 ∧ 𝜒))) | 
| 3 | 2 | pm5.74i 271 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: cusgr3cyclex 35141 clss2lem 43624 | 
| Copyright terms: Public domain | W3C validator |