MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.3 Structured version   Visualization version   GIF version

Theorem pm5.3 573
Description: Theorem *5.3 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Assertion
Ref Expression
pm5.3 (((𝜑𝜓) → 𝜒) ↔ ((𝜑𝜓) → (𝜑𝜒)))

Proof of Theorem pm5.3
StepHypRef Expression
1 simpl 483 . . 3 ((𝜑𝜓) → 𝜑)
21biantrurd 533 . 2 ((𝜑𝜓) → (𝜒 ↔ (𝜑𝜒)))
32pm5.74i 270 1 (((𝜑𝜓) → 𝜒) ↔ ((𝜑𝜓) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  cusgr3cyclex  33098  clss2lem  41219
  Copyright terms: Public domain W3C validator