Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cusgr3cyclex Structured version   Visualization version   GIF version

Theorem cusgr3cyclex 35121
Description: Every complete simple graph with more than two vertices has a 3-cycle. (Contributed by BTernaryTau, 4-Oct-2023.)
Hypothesis
Ref Expression
cusgr3cyclex.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgr3cyclex ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   𝑉(𝑓,𝑝)

Proof of Theorem cusgr3cyclex
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anass 1094 . . . . . . 7 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ (𝑎𝑉 ∧ (𝑏𝑉𝑐𝑉)))
21bianass 642 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) ↔ ((𝐺 ∈ ComplUSGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)))
3 cusgrusgr 29451 . . . . . . . . 9 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
4 usgrumgr 29213 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
53, 4syl 17 . . . . . . . 8 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ UMGraph)
6 3simpc 1149 . . . . . . . . . . . . 13 ((𝑎𝑉𝑏𝑉𝑐𝑉) → (𝑏𝑉𝑐𝑉))
76ancli 548 . . . . . . . . . . . 12 ((𝑎𝑉𝑏𝑉𝑐𝑉) → ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)))
8 df-3an 1088 . . . . . . . . . . . . 13 ((𝑎𝑏𝑎𝑐𝑏𝑐) ↔ ((𝑎𝑏𝑎𝑐) ∧ 𝑏𝑐))
98biimpi 216 . . . . . . . . . . . 12 ((𝑎𝑏𝑎𝑐𝑏𝑐) → ((𝑎𝑏𝑎𝑐) ∧ 𝑏𝑐))
10 an32 646 . . . . . . . . . . . . . . 15 ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)) ↔ (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ (𝑏𝑉𝑐𝑉)))
1110anbi1i 624 . . . . . . . . . . . . . 14 (((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)) ∧ 𝑏𝑐) ↔ ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑏𝑐))
12 anass 468 . . . . . . . . . . . . . 14 (((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑏𝑐) ↔ (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)))
1311, 12sylbb 219 . . . . . . . . . . . . 13 (((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)) ∧ 𝑏𝑐) → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)))
1413anasss 466 . . . . . . . . . . . 12 ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ ((𝑎𝑏𝑎𝑐) ∧ 𝑏𝑐)) → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)))
157, 9, 14syl2an 596 . . . . . . . . . . 11 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)))
16 anandi3 1101 . . . . . . . . . . . . . . 15 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑉𝑐𝑉)))
1716anbi1i 624 . . . . . . . . . . . . . 14 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ↔ (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)))
18 an4 656 . . . . . . . . . . . . . 14 ((((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)) ↔ (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) ∧ ((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐)))
1917, 18sylbb 219 . . . . . . . . . . . . 13 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) ∧ ((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐)))
20 df-3an 1088 . . . . . . . . . . . . . . 15 ((𝑎𝑉𝑏𝑉𝑎𝑏) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏))
21 cusgr3cyclex.1 . . . . . . . . . . . . . . . 16 𝑉 = (Vtx‘𝐺)
22 eqid 2735 . . . . . . . . . . . . . . . 16 (Edg‘𝐺) = (Edg‘𝐺)
2321, 22cusgredgex2 35107 . . . . . . . . . . . . . . 15 (𝐺 ∈ ComplUSGraph → ((𝑎𝑉𝑏𝑉𝑎𝑏) → {𝑎, 𝑏} ∈ (Edg‘𝐺)))
2420, 23biimtrrid 243 . . . . . . . . . . . . . 14 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ (Edg‘𝐺)))
25 df-3an 1088 . . . . . . . . . . . . . . 15 ((𝑎𝑉𝑐𝑉𝑎𝑐) ↔ ((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐))
2621, 22cusgredgex2 35107 . . . . . . . . . . . . . . 15 (𝐺 ∈ ComplUSGraph → ((𝑎𝑉𝑐𝑉𝑎𝑐) → {𝑎, 𝑐} ∈ (Edg‘𝐺)))
2725, 26biimtrrid 243 . . . . . . . . . . . . . 14 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐) → {𝑎, 𝑐} ∈ (Edg‘𝐺)))
2824, 27anim12d 609 . . . . . . . . . . . . 13 (𝐺 ∈ ComplUSGraph → ((((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) ∧ ((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺))))
2919, 28syl5 34 . . . . . . . . . . . 12 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺))))
30 df-3an 1088 . . . . . . . . . . . . 13 ((𝑏𝑉𝑐𝑉𝑏𝑐) ↔ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐))
3121, 22cusgredgex2 35107 . . . . . . . . . . . . 13 (𝐺 ∈ ComplUSGraph → ((𝑏𝑉𝑐𝑉𝑏𝑐) → {𝑏, 𝑐} ∈ (Edg‘𝐺)))
3230, 31biimtrrid 243 . . . . . . . . . . . 12 (𝐺 ∈ ComplUSGraph → (((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐) → {𝑏, 𝑐} ∈ (Edg‘𝐺)))
3329, 32anim12d 609 . . . . . . . . . . 11 (𝐺 ∈ ComplUSGraph → ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
3415, 33syl5 34 . . . . . . . . . 10 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
35 3anan32 1096 . . . . . . . . . . 11 (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ↔ (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
36 prcom 4737 . . . . . . . . . . . . 13 {𝑎, 𝑐} = {𝑐, 𝑎}
3736eleq1i 2830 . . . . . . . . . . . 12 ({𝑎, 𝑐} ∈ (Edg‘𝐺) ↔ {𝑐, 𝑎} ∈ (Edg‘𝐺))
38373anbi3i 1158 . . . . . . . . . . 11 (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ↔ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))
3935, 38bitr3i 277 . . . . . . . . . 10 ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))
4034, 39imbitrdi 251 . . . . . . . . 9 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))))
41 pm5.3 572 . . . . . . . . 9 ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) ↔ (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))))
4240, 41sylib 218 . . . . . . . 8 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))))
4321, 22umgr3cyclex 30212 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎))
44 3simpa 1147 . . . . . . . . . . 11 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎) → (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
45442eximi 1833 . . . . . . . . . 10 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
4643, 45syl 17 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
47463expib 1121 . . . . . . . 8 (𝐺 ∈ UMGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
485, 42, 47sylsyld 61 . . . . . . 7 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
4948expdimp 452 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → ((𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
502, 49sylbir 235 . . . . 5 (((𝐺 ∈ ComplUSGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
5150reximdvva 3205 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑎𝑉) → (∃𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑏𝑉𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
5251reximdva 3166 . . 3 (𝐺 ∈ ComplUSGraph → (∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
53 id 22 . . . . . 6 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
5453rexlimivw 3149 . . . . 5 (∃𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
5554rexlimivw 3149 . . . 4 (∃𝑏𝑉𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
5655rexlimivw 3149 . . 3 (∃𝑎𝑉𝑏𝑉𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
5752, 56syl6 35 . 2 (𝐺 ∈ ComplUSGraph → (∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
5821fvexi 6921 . . 3 𝑉 ∈ V
59 hashgt23el 14460 . . 3 ((𝑉 ∈ V ∧ 2 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
6058, 59mpan 690 . 2 (2 < (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
6157, 60impel 505 1 ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wne 2938  wrex 3068  Vcvv 3478  {cpr 4633   class class class wbr 5148  cfv 6563  0cc0 11153   < clt 11293  2c2 12319  3c3 12320  chash 14366  Vtxcvtx 29028  Edgcedg 29079  UMGraphcumgr 29113  USGraphcusgr 29181  ComplUSGraphccusgr 29442  Cyclesccycls 29818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-xneg 13152  df-xadd 13153  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-s4 14886  df-edg 29080  df-uhgr 29090  df-upgr 29114  df-umgr 29115  df-usgr 29183  df-nbgr 29365  df-uvtx 29418  df-cplgr 29443  df-cusgr 29444  df-wlks 29632  df-trls 29725  df-pths 29749  df-cycls 29820
This theorem is referenced by:  cusgracyclt3v  35141
  Copyright terms: Public domain W3C validator