Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cusgr3cyclex Structured version   Visualization version   GIF version

Theorem cusgr3cyclex 35123
Description: Every complete simple graph with more than two vertices has a 3-cycle. (Contributed by BTernaryTau, 4-Oct-2023.)
Hypothesis
Ref Expression
cusgr3cyclex.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgr3cyclex ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   𝑉(𝑓,𝑝)

Proof of Theorem cusgr3cyclex
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anass 1094 . . . . . . 7 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ (𝑎𝑉 ∧ (𝑏𝑉𝑐𝑉)))
21bianass 642 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) ↔ ((𝐺 ∈ ComplUSGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)))
3 cusgrusgr 29352 . . . . . . . . 9 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
4 usgrumgr 29114 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
53, 4syl 17 . . . . . . . 8 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ UMGraph)
6 3simpc 1150 . . . . . . . . . . . . 13 ((𝑎𝑉𝑏𝑉𝑐𝑉) → (𝑏𝑉𝑐𝑉))
76ancli 548 . . . . . . . . . . . 12 ((𝑎𝑉𝑏𝑉𝑐𝑉) → ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)))
8 df-3an 1088 . . . . . . . . . . . . 13 ((𝑎𝑏𝑎𝑐𝑏𝑐) ↔ ((𝑎𝑏𝑎𝑐) ∧ 𝑏𝑐))
98biimpi 216 . . . . . . . . . . . 12 ((𝑎𝑏𝑎𝑐𝑏𝑐) → ((𝑎𝑏𝑎𝑐) ∧ 𝑏𝑐))
10 an32 646 . . . . . . . . . . . . . . 15 ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)) ↔ (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ (𝑏𝑉𝑐𝑉)))
1110anbi1i 624 . . . . . . . . . . . . . 14 (((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)) ∧ 𝑏𝑐) ↔ ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑏𝑐))
12 anass 468 . . . . . . . . . . . . . 14 (((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑏𝑐) ↔ (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)))
1311, 12sylbb 219 . . . . . . . . . . . . 13 (((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)) ∧ 𝑏𝑐) → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)))
1413anasss 466 . . . . . . . . . . . 12 ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ ((𝑎𝑏𝑎𝑐) ∧ 𝑏𝑐)) → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)))
157, 9, 14syl2an 596 . . . . . . . . . . 11 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)))
16 anandi3 1101 . . . . . . . . . . . . . . 15 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑉𝑐𝑉)))
1716anbi1i 624 . . . . . . . . . . . . . 14 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ↔ (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)))
18 an4 656 . . . . . . . . . . . . . 14 ((((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)) ↔ (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) ∧ ((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐)))
1917, 18sylbb 219 . . . . . . . . . . . . 13 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) ∧ ((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐)))
20 df-3an 1088 . . . . . . . . . . . . . . 15 ((𝑎𝑉𝑏𝑉𝑎𝑏) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏))
21 cusgr3cyclex.1 . . . . . . . . . . . . . . . 16 𝑉 = (Vtx‘𝐺)
22 eqid 2730 . . . . . . . . . . . . . . . 16 (Edg‘𝐺) = (Edg‘𝐺)
2321, 22cusgredgex2 35110 . . . . . . . . . . . . . . 15 (𝐺 ∈ ComplUSGraph → ((𝑎𝑉𝑏𝑉𝑎𝑏) → {𝑎, 𝑏} ∈ (Edg‘𝐺)))
2420, 23biimtrrid 243 . . . . . . . . . . . . . 14 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ (Edg‘𝐺)))
25 df-3an 1088 . . . . . . . . . . . . . . 15 ((𝑎𝑉𝑐𝑉𝑎𝑐) ↔ ((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐))
2621, 22cusgredgex2 35110 . . . . . . . . . . . . . . 15 (𝐺 ∈ ComplUSGraph → ((𝑎𝑉𝑐𝑉𝑎𝑐) → {𝑎, 𝑐} ∈ (Edg‘𝐺)))
2725, 26biimtrrid 243 . . . . . . . . . . . . . 14 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐) → {𝑎, 𝑐} ∈ (Edg‘𝐺)))
2824, 27anim12d 609 . . . . . . . . . . . . 13 (𝐺 ∈ ComplUSGraph → ((((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) ∧ ((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺))))
2919, 28syl5 34 . . . . . . . . . . . 12 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺))))
30 df-3an 1088 . . . . . . . . . . . . 13 ((𝑏𝑉𝑐𝑉𝑏𝑐) ↔ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐))
3121, 22cusgredgex2 35110 . . . . . . . . . . . . 13 (𝐺 ∈ ComplUSGraph → ((𝑏𝑉𝑐𝑉𝑏𝑐) → {𝑏, 𝑐} ∈ (Edg‘𝐺)))
3230, 31biimtrrid 243 . . . . . . . . . . . 12 (𝐺 ∈ ComplUSGraph → (((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐) → {𝑏, 𝑐} ∈ (Edg‘𝐺)))
3329, 32anim12d 609 . . . . . . . . . . 11 (𝐺 ∈ ComplUSGraph → ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
3415, 33syl5 34 . . . . . . . . . 10 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
35 3anan32 1096 . . . . . . . . . . 11 (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ↔ (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
36 prcom 4698 . . . . . . . . . . . . 13 {𝑎, 𝑐} = {𝑐, 𝑎}
3736eleq1i 2820 . . . . . . . . . . . 12 ({𝑎, 𝑐} ∈ (Edg‘𝐺) ↔ {𝑐, 𝑎} ∈ (Edg‘𝐺))
38373anbi3i 1159 . . . . . . . . . . 11 (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ↔ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))
3935, 38bitr3i 277 . . . . . . . . . 10 ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))
4034, 39imbitrdi 251 . . . . . . . . 9 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))))
41 pm5.3 572 . . . . . . . . 9 ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) ↔ (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))))
4240, 41sylib 218 . . . . . . . 8 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))))
4321, 22umgr3cyclex 30118 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎))
44 3simpa 1148 . . . . . . . . . . 11 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎) → (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
45442eximi 1836 . . . . . . . . . 10 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
4643, 45syl 17 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
47463expib 1122 . . . . . . . 8 (𝐺 ∈ UMGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
485, 42, 47sylsyld 61 . . . . . . 7 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
4948expdimp 452 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → ((𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
502, 49sylbir 235 . . . . 5 (((𝐺 ∈ ComplUSGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
5150reximdvva 3186 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑎𝑉) → (∃𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑏𝑉𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
5251reximdva 3147 . . 3 (𝐺 ∈ ComplUSGraph → (∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
53 id 22 . . . . . 6 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
5453rexlimivw 3131 . . . . 5 (∃𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
5554rexlimivw 3131 . . . 4 (∃𝑏𝑉𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
5655rexlimivw 3131 . . 3 (∃𝑎𝑉𝑏𝑉𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
5752, 56syl6 35 . 2 (𝐺 ∈ ComplUSGraph → (∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
5821fvexi 6874 . . 3 𝑉 ∈ V
59 hashgt23el 14395 . . 3 ((𝑉 ∈ V ∧ 2 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
6058, 59mpan 690 . 2 (2 < (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
6157, 60impel 505 1 ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  {cpr 4593   class class class wbr 5109  cfv 6513  0cc0 11074   < clt 11214  2c2 12242  3c3 12243  chash 14301  Vtxcvtx 28929  Edgcedg 28980  UMGraphcumgr 29014  USGraphcusgr 29082  ComplUSGraphccusgr 29343  Cyclesccycls 29721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-oadd 8440  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-dju 9860  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-n0 12449  df-xnn0 12522  df-z 12536  df-uz 12800  df-xneg 13078  df-xadd 13079  df-fz 13475  df-fzo 13622  df-hash 14302  df-word 14485  df-concat 14542  df-s1 14567  df-s2 14820  df-s3 14821  df-s4 14822  df-edg 28981  df-uhgr 28991  df-upgr 29015  df-umgr 29016  df-usgr 29084  df-nbgr 29266  df-uvtx 29319  df-cplgr 29344  df-cusgr 29345  df-wlks 29533  df-trls 29626  df-pths 29650  df-cycls 29723
This theorem is referenced by:  cusgracyclt3v  35143
  Copyright terms: Public domain W3C validator