Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cusgr3cyclex Structured version   Visualization version   GIF version

Theorem cusgr3cyclex 35108
Description: Every complete simple graph with more than two vertices has a 3-cycle. (Contributed by BTernaryTau, 4-Oct-2023.)
Hypothesis
Ref Expression
cusgr3cyclex.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgr3cyclex ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   𝑉(𝑓,𝑝)

Proof of Theorem cusgr3cyclex
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anass 1094 . . . . . . 7 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ (𝑎𝑉 ∧ (𝑏𝑉𝑐𝑉)))
21bianass 642 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) ↔ ((𝐺 ∈ ComplUSGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)))
3 cusgrusgr 29382 . . . . . . . . 9 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
4 usgrumgr 29144 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
53, 4syl 17 . . . . . . . 8 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ UMGraph)
6 3simpc 1150 . . . . . . . . . . . . 13 ((𝑎𝑉𝑏𝑉𝑐𝑉) → (𝑏𝑉𝑐𝑉))
76ancli 548 . . . . . . . . . . . 12 ((𝑎𝑉𝑏𝑉𝑐𝑉) → ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)))
8 df-3an 1088 . . . . . . . . . . . . 13 ((𝑎𝑏𝑎𝑐𝑏𝑐) ↔ ((𝑎𝑏𝑎𝑐) ∧ 𝑏𝑐))
98biimpi 216 . . . . . . . . . . . 12 ((𝑎𝑏𝑎𝑐𝑏𝑐) → ((𝑎𝑏𝑎𝑐) ∧ 𝑏𝑐))
10 an32 646 . . . . . . . . . . . . . . 15 ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)) ↔ (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ (𝑏𝑉𝑐𝑉)))
1110anbi1i 624 . . . . . . . . . . . . . 14 (((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)) ∧ 𝑏𝑐) ↔ ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑏𝑐))
12 anass 468 . . . . . . . . . . . . . 14 (((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑏𝑐) ↔ (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)))
1311, 12sylbb 219 . . . . . . . . . . . . 13 (((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)) ∧ 𝑏𝑐) → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)))
1413anasss 466 . . . . . . . . . . . 12 ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ ((𝑎𝑏𝑎𝑐) ∧ 𝑏𝑐)) → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)))
157, 9, 14syl2an 596 . . . . . . . . . . 11 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)))
16 anandi3 1101 . . . . . . . . . . . . . . 15 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑉𝑐𝑉)))
1716anbi1i 624 . . . . . . . . . . . . . 14 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ↔ (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)))
18 an4 656 . . . . . . . . . . . . . 14 ((((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)) ↔ (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) ∧ ((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐)))
1917, 18sylbb 219 . . . . . . . . . . . . 13 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) ∧ ((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐)))
20 df-3an 1088 . . . . . . . . . . . . . . 15 ((𝑎𝑉𝑏𝑉𝑎𝑏) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏))
21 cusgr3cyclex.1 . . . . . . . . . . . . . . . 16 𝑉 = (Vtx‘𝐺)
22 eqid 2729 . . . . . . . . . . . . . . . 16 (Edg‘𝐺) = (Edg‘𝐺)
2321, 22cusgredgex2 35095 . . . . . . . . . . . . . . 15 (𝐺 ∈ ComplUSGraph → ((𝑎𝑉𝑏𝑉𝑎𝑏) → {𝑎, 𝑏} ∈ (Edg‘𝐺)))
2420, 23biimtrrid 243 . . . . . . . . . . . . . 14 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ (Edg‘𝐺)))
25 df-3an 1088 . . . . . . . . . . . . . . 15 ((𝑎𝑉𝑐𝑉𝑎𝑐) ↔ ((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐))
2621, 22cusgredgex2 35095 . . . . . . . . . . . . . . 15 (𝐺 ∈ ComplUSGraph → ((𝑎𝑉𝑐𝑉𝑎𝑐) → {𝑎, 𝑐} ∈ (Edg‘𝐺)))
2725, 26biimtrrid 243 . . . . . . . . . . . . . 14 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐) → {𝑎, 𝑐} ∈ (Edg‘𝐺)))
2824, 27anim12d 609 . . . . . . . . . . . . 13 (𝐺 ∈ ComplUSGraph → ((((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) ∧ ((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺))))
2919, 28syl5 34 . . . . . . . . . . . 12 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺))))
30 df-3an 1088 . . . . . . . . . . . . 13 ((𝑏𝑉𝑐𝑉𝑏𝑐) ↔ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐))
3121, 22cusgredgex2 35095 . . . . . . . . . . . . 13 (𝐺 ∈ ComplUSGraph → ((𝑏𝑉𝑐𝑉𝑏𝑐) → {𝑏, 𝑐} ∈ (Edg‘𝐺)))
3230, 31biimtrrid 243 . . . . . . . . . . . 12 (𝐺 ∈ ComplUSGraph → (((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐) → {𝑏, 𝑐} ∈ (Edg‘𝐺)))
3329, 32anim12d 609 . . . . . . . . . . 11 (𝐺 ∈ ComplUSGraph → ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
3415, 33syl5 34 . . . . . . . . . 10 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
35 3anan32 1096 . . . . . . . . . . 11 (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ↔ (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
36 prcom 4686 . . . . . . . . . . . . 13 {𝑎, 𝑐} = {𝑐, 𝑎}
3736eleq1i 2819 . . . . . . . . . . . 12 ({𝑎, 𝑐} ∈ (Edg‘𝐺) ↔ {𝑐, 𝑎} ∈ (Edg‘𝐺))
38373anbi3i 1159 . . . . . . . . . . 11 (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ↔ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))
3935, 38bitr3i 277 . . . . . . . . . 10 ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))
4034, 39imbitrdi 251 . . . . . . . . 9 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))))
41 pm5.3 572 . . . . . . . . 9 ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) ↔ (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))))
4240, 41sylib 218 . . . . . . . 8 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))))
4321, 22umgr3cyclex 30145 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎))
44 3simpa 1148 . . . . . . . . . . 11 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎) → (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
45442eximi 1836 . . . . . . . . . 10 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
4643, 45syl 17 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
47463expib 1122 . . . . . . . 8 (𝐺 ∈ UMGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
485, 42, 47sylsyld 61 . . . . . . 7 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
4948expdimp 452 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → ((𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
502, 49sylbir 235 . . . . 5 (((𝐺 ∈ ComplUSGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
5150reximdvva 3177 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑎𝑉) → (∃𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑏𝑉𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
5251reximdva 3142 . . 3 (𝐺 ∈ ComplUSGraph → (∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
53 id 22 . . . . . 6 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
5453rexlimivw 3126 . . . . 5 (∃𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
5554rexlimivw 3126 . . . 4 (∃𝑏𝑉𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
5655rexlimivw 3126 . . 3 (∃𝑎𝑉𝑏𝑉𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
5752, 56syl6 35 . 2 (𝐺 ∈ ComplUSGraph → (∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
5821fvexi 6840 . . 3 𝑉 ∈ V
59 hashgt23el 14349 . . 3 ((𝑉 ∈ V ∧ 2 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
6058, 59mpan 690 . 2 (2 < (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
6157, 60impel 505 1 ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  Vcvv 3438  {cpr 4581   class class class wbr 5095  cfv 6486  0cc0 11028   < clt 11168  2c2 12201  3c3 12202  chash 14255  Vtxcvtx 28959  Edgcedg 29010  UMGraphcumgr 29044  USGraphcusgr 29112  ComplUSGraphccusgr 29373  Cyclesccycls 29748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-xneg 13032  df-xadd 13033  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521  df-s2 14773  df-s3 14774  df-s4 14775  df-edg 29011  df-uhgr 29021  df-upgr 29045  df-umgr 29046  df-usgr 29114  df-nbgr 29296  df-uvtx 29349  df-cplgr 29374  df-cusgr 29375  df-wlks 29563  df-trls 29654  df-pths 29677  df-cycls 29750
This theorem is referenced by:  cusgracyclt3v  35128
  Copyright terms: Public domain W3C validator