Step | Hyp | Ref
| Expression |
1 | | 3anass 1093 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ↔ (𝑎 ∈ 𝑉 ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))) |
2 | 1 | bianass 638 |
. . . . . 6
⊢ ((𝐺 ∈ ComplUSGraph ∧
(𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ↔ ((𝐺 ∈ ComplUSGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))) |
3 | | cusgrusgr 27689 |
. . . . . . . . 9
⊢ (𝐺 ∈ ComplUSGraph →
𝐺 ∈
USGraph) |
4 | | usgrumgr 27452 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
UMGraph) |
5 | 3, 4 | syl 17 |
. . . . . . . 8
⊢ (𝐺 ∈ ComplUSGraph →
𝐺 ∈
UMGraph) |
6 | | 3simpc 1148 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) |
7 | 6 | ancli 548 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))) |
8 | | df-3an 1087 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) ↔ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐) ∧ 𝑏 ≠ 𝑐)) |
9 | 8 | biimpi 215 |
. . . . . . . . . . . 12
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐) ∧ 𝑏 ≠ 𝑐)) |
10 | | an32 642 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐)) ↔ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐)) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))) |
11 | 10 | anbi1i 623 |
. . . . . . . . . . . . . 14
⊢
(((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐)) ∧ 𝑏 ≠ 𝑐) ↔ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐)) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑏 ≠ 𝑐)) |
12 | | anass 468 |
. . . . . . . . . . . . . 14
⊢
(((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐)) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ 𝑏 ≠ 𝑐) ↔ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐)) ∧ ((𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ 𝑏 ≠ 𝑐))) |
13 | 11, 12 | sylbb 218 |
. . . . . . . . . . . . 13
⊢
(((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐)) ∧ 𝑏 ≠ 𝑐) → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐)) ∧ ((𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ 𝑏 ≠ 𝑐))) |
14 | 13 | anasss 466 |
. . . . . . . . . . . 12
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐) ∧ 𝑏 ≠ 𝑐)) → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐)) ∧ ((𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ 𝑏 ≠ 𝑐))) |
15 | 7, 9, 14 | syl2an 595 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐)) → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐)) ∧ ((𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ 𝑏 ≠ 𝑐))) |
16 | | anandi3 1100 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ↔ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))) |
17 | 16 | anbi1i 623 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐)) ↔ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐))) |
18 | | an4 652 |
. . . . . . . . . . . . . 14
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐)) ↔ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ 𝑎 ≠ 𝑐))) |
19 | 17, 18 | sylbb 218 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐)) → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ 𝑎 ≠ 𝑐))) |
20 | | df-3an 1087 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑎 ≠ 𝑏) ↔ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏)) |
21 | | cusgr3cyclex.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝑉 = (Vtx‘𝐺) |
22 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
23 | 21, 22 | cusgredgex2 32984 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ ComplUSGraph →
((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ (Edg‘𝐺))) |
24 | 20, 23 | syl5bir 242 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ ComplUSGraph →
(((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → {𝑎, 𝑏} ∈ (Edg‘𝐺))) |
25 | | df-3an 1087 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝑎 ≠ 𝑐) ↔ ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ 𝑎 ≠ 𝑐)) |
26 | 21, 22 | cusgredgex2 32984 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ ComplUSGraph →
((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝑎 ≠ 𝑐) → {𝑎, 𝑐} ∈ (Edg‘𝐺))) |
27 | 25, 26 | syl5bir 242 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ ComplUSGraph →
(((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ 𝑎 ≠ 𝑐) → {𝑎, 𝑐} ∈ (Edg‘𝐺))) |
28 | 24, 27 | anim12d 608 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ ComplUSGraph →
((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) ∧ ((𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ 𝑎 ≠ 𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)))) |
29 | 19, 28 | syl5 34 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ ComplUSGraph →
(((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)))) |
30 | | df-3an 1087 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝑏 ≠ 𝑐) ↔ ((𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ 𝑏 ≠ 𝑐)) |
31 | 21, 22 | cusgredgex2 32984 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ ComplUSGraph →
((𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝑏 ≠ 𝑐) → {𝑏, 𝑐} ∈ (Edg‘𝐺))) |
32 | 30, 31 | syl5bir 242 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ ComplUSGraph →
(((𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ 𝑏 ≠ 𝑐) → {𝑏, 𝑐} ∈ (Edg‘𝐺))) |
33 | 29, 32 | anim12d 608 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ ComplUSGraph →
((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐)) ∧ ((𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ 𝑏 ≠ 𝑐)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) |
34 | 15, 33 | syl5 34 |
. . . . . . . . . 10
⊢ (𝐺 ∈ ComplUSGraph →
(((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) |
35 | | 3anan32 1095 |
. . . . . . . . . . 11
⊢ (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ↔ (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) |
36 | | prcom 4665 |
. . . . . . . . . . . . 13
⊢ {𝑎, 𝑐} = {𝑐, 𝑎} |
37 | 36 | eleq1i 2829 |
. . . . . . . . . . . 12
⊢ ({𝑎, 𝑐} ∈ (Edg‘𝐺) ↔ {𝑐, 𝑎} ∈ (Edg‘𝐺)) |
38 | 37 | 3anbi3i 1157 |
. . . . . . . . . . 11
⊢ (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ↔ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) |
39 | 35, 38 | bitr3i 276 |
. . . . . . . . . 10
⊢ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) |
40 | 34, 39 | syl6ib 250 |
. . . . . . . . 9
⊢ (𝐺 ∈ ComplUSGraph →
(((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))) |
41 | | pm5.3 572 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) ↔ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐)) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))))) |
42 | 40, 41 | sylib 217 |
. . . . . . . 8
⊢ (𝐺 ∈ ComplUSGraph →
(((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐)) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))))) |
43 | 21, 22 | umgr3cyclex 28448 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ UMGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎)) |
44 | | 3simpa 1146 |
. . . . . . . . . . 11
⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎) → (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) |
45 | 44 | 2eximi 1839 |
. . . . . . . . . 10
⊢
(∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) |
46 | 43, 45 | syl 17 |
. . . . . . . . 9
⊢ ((𝐺 ∈ UMGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) |
47 | 46 | 3expib 1120 |
. . . . . . . 8
⊢ (𝐺 ∈ UMGraph → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))) |
48 | 5, 42, 47 | sylsyld 61 |
. . . . . . 7
⊢ (𝐺 ∈ ComplUSGraph →
(((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))) |
49 | 48 | expdimp 452 |
. . . . . 6
⊢ ((𝐺 ∈ ComplUSGraph ∧
(𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))) |
50 | 2, 49 | sylbir 234 |
. . . . 5
⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑎 ∈ 𝑉) ∧ (𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))) |
51 | 50 | reximdvva 3205 |
. . . 4
⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑎 ∈ 𝑉) → (∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))) |
52 | 51 | reximdva 3202 |
. . 3
⊢ (𝐺 ∈ ComplUSGraph →
(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))) |
53 | | id 22 |
. . . . . 6
⊢
(∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) |
54 | 53 | rexlimivw 3210 |
. . . . 5
⊢
(∃𝑐 ∈
𝑉 ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) |
55 | 54 | rexlimivw 3210 |
. . . 4
⊢
(∃𝑏 ∈
𝑉 ∃𝑐 ∈ 𝑉 ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) |
56 | 55 | rexlimivw 3210 |
. . 3
⊢
(∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) |
57 | 52, 56 | syl6 35 |
. 2
⊢ (𝐺 ∈ ComplUSGraph →
(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))) |
58 | 21 | fvexi 6770 |
. . 3
⊢ 𝑉 ∈ V |
59 | | hashgt23el 14067 |
. . 3
⊢ ((𝑉 ∈ V ∧ 2 <
(♯‘𝑉)) →
∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐)) |
60 | 58, 59 | mpan 686 |
. 2
⊢ (2 <
(♯‘𝑉) →
∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐)) |
61 | 57, 60 | impel 505 |
1
⊢ ((𝐺 ∈ ComplUSGraph ∧ 2
< (♯‘𝑉))
→ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) |