Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cusgr3cyclex Structured version   Visualization version   GIF version

Theorem cusgr3cyclex 35104
Description: Every complete simple graph with more than two vertices has a 3-cycle. (Contributed by BTernaryTau, 4-Oct-2023.)
Hypothesis
Ref Expression
cusgr3cyclex.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgr3cyclex ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   𝑉(𝑓,𝑝)

Proof of Theorem cusgr3cyclex
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anass 1095 . . . . . . 7 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ (𝑎𝑉 ∧ (𝑏𝑉𝑐𝑉)))
21bianass 641 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) ↔ ((𝐺 ∈ ComplUSGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)))
3 cusgrusgr 29454 . . . . . . . . 9 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
4 usgrumgr 29216 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
53, 4syl 17 . . . . . . . 8 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ UMGraph)
6 3simpc 1150 . . . . . . . . . . . . 13 ((𝑎𝑉𝑏𝑉𝑐𝑉) → (𝑏𝑉𝑐𝑉))
76ancli 548 . . . . . . . . . . . 12 ((𝑎𝑉𝑏𝑉𝑐𝑉) → ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)))
8 df-3an 1089 . . . . . . . . . . . . 13 ((𝑎𝑏𝑎𝑐𝑏𝑐) ↔ ((𝑎𝑏𝑎𝑐) ∧ 𝑏𝑐))
98biimpi 216 . . . . . . . . . . . 12 ((𝑎𝑏𝑎𝑐𝑏𝑐) → ((𝑎𝑏𝑎𝑐) ∧ 𝑏𝑐))
10 an32 645 . . . . . . . . . . . . . . 15 ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)) ↔ (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ (𝑏𝑉𝑐𝑉)))
1110anbi1i 623 . . . . . . . . . . . . . 14 (((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)) ∧ 𝑏𝑐) ↔ ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑏𝑐))
12 anass 468 . . . . . . . . . . . . . 14 (((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑏𝑐) ↔ (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)))
1311, 12sylbb 219 . . . . . . . . . . . . 13 (((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)) ∧ 𝑏𝑐) → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)))
1413anasss 466 . . . . . . . . . . . 12 ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ ((𝑎𝑏𝑎𝑐) ∧ 𝑏𝑐)) → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)))
157, 9, 14syl2an 595 . . . . . . . . . . 11 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)))
16 anandi3 1102 . . . . . . . . . . . . . . 15 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑉𝑐𝑉)))
1716anbi1i 623 . . . . . . . . . . . . . 14 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ↔ (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)))
18 an4 655 . . . . . . . . . . . . . 14 ((((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑉𝑐𝑉)) ∧ (𝑎𝑏𝑎𝑐)) ↔ (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) ∧ ((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐)))
1917, 18sylbb 219 . . . . . . . . . . . . 13 (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) ∧ ((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐)))
20 df-3an 1089 . . . . . . . . . . . . . . 15 ((𝑎𝑉𝑏𝑉𝑎𝑏) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏))
21 cusgr3cyclex.1 . . . . . . . . . . . . . . . 16 𝑉 = (Vtx‘𝐺)
22 eqid 2740 . . . . . . . . . . . . . . . 16 (Edg‘𝐺) = (Edg‘𝐺)
2321, 22cusgredgex2 35090 . . . . . . . . . . . . . . 15 (𝐺 ∈ ComplUSGraph → ((𝑎𝑉𝑏𝑉𝑎𝑏) → {𝑎, 𝑏} ∈ (Edg‘𝐺)))
2420, 23biimtrrid 243 . . . . . . . . . . . . . 14 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ (Edg‘𝐺)))
25 df-3an 1089 . . . . . . . . . . . . . . 15 ((𝑎𝑉𝑐𝑉𝑎𝑐) ↔ ((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐))
2621, 22cusgredgex2 35090 . . . . . . . . . . . . . . 15 (𝐺 ∈ ComplUSGraph → ((𝑎𝑉𝑐𝑉𝑎𝑐) → {𝑎, 𝑐} ∈ (Edg‘𝐺)))
2725, 26biimtrrid 243 . . . . . . . . . . . . . 14 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐) → {𝑎, 𝑐} ∈ (Edg‘𝐺)))
2824, 27anim12d 608 . . . . . . . . . . . . 13 (𝐺 ∈ ComplUSGraph → ((((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) ∧ ((𝑎𝑉𝑐𝑉) ∧ 𝑎𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺))))
2919, 28syl5 34 . . . . . . . . . . . 12 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺))))
30 df-3an 1089 . . . . . . . . . . . . 13 ((𝑏𝑉𝑐𝑉𝑏𝑐) ↔ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐))
3121, 22cusgredgex2 35090 . . . . . . . . . . . . 13 (𝐺 ∈ ComplUSGraph → ((𝑏𝑉𝑐𝑉𝑏𝑐) → {𝑏, 𝑐} ∈ (Edg‘𝐺)))
3230, 31biimtrrid 243 . . . . . . . . . . . 12 (𝐺 ∈ ComplUSGraph → (((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐) → {𝑏, 𝑐} ∈ (Edg‘𝐺)))
3329, 32anim12d 608 . . . . . . . . . . 11 (𝐺 ∈ ComplUSGraph → ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐)) ∧ ((𝑏𝑉𝑐𝑉) ∧ 𝑏𝑐)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
3415, 33syl5 34 . . . . . . . . . 10 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
35 3anan32 1097 . . . . . . . . . . 11 (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ↔ (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
36 prcom 4757 . . . . . . . . . . . . 13 {𝑎, 𝑐} = {𝑐, 𝑎}
3736eleq1i 2835 . . . . . . . . . . . 12 ({𝑎, 𝑐} ∈ (Edg‘𝐺) ↔ {𝑐, 𝑎} ∈ (Edg‘𝐺))
38373anbi3i 1159 . . . . . . . . . . 11 (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ↔ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))
3935, 38bitr3i 277 . . . . . . . . . 10 ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺)) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))
4034, 39imbitrdi 251 . . . . . . . . 9 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))))
41 pm5.3 572 . . . . . . . . 9 ((((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) ↔ (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))))
4240, 41sylib 218 . . . . . . . 8 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺)))))
4321, 22umgr3cyclex 30215 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎))
44 3simpa 1148 . . . . . . . . . . 11 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎) → (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
45442eximi 1834 . . . . . . . . . 10 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
4643, 45syl 17 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
47463expib 1122 . . . . . . . 8 (𝐺 ∈ UMGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑐, 𝑎} ∈ (Edg‘𝐺))) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
485, 42, 47sylsyld 61 . . . . . . 7 (𝐺 ∈ ComplUSGraph → (((𝑎𝑉𝑏𝑉𝑐𝑉) ∧ (𝑎𝑏𝑎𝑐𝑏𝑐)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
4948expdimp 452 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → ((𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
502, 49sylbir 235 . . . . 5 (((𝐺 ∈ ComplUSGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
5150reximdvva 3213 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑎𝑉) → (∃𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑏𝑉𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
5251reximdva 3174 . . 3 (𝐺 ∈ ComplUSGraph → (∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
53 id 22 . . . . . 6 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
5453rexlimivw 3157 . . . . 5 (∃𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
5554rexlimivw 3157 . . . 4 (∃𝑏𝑉𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
5655rexlimivw 3157 . . 3 (∃𝑎𝑉𝑏𝑉𝑐𝑉𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
5752, 56syl6 35 . 2 (𝐺 ∈ ComplUSGraph → (∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
5821fvexi 6934 . . 3 𝑉 ∈ V
59 hashgt23el 14473 . . 3 ((𝑉 ∈ V ∧ 2 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
6058, 59mpan 689 . 2 (2 < (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
6157, 60impel 505 1 ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  {cpr 4650   class class class wbr 5166  cfv 6573  0cc0 11184   < clt 11324  2c2 12348  3c3 12349  chash 14379  Vtxcvtx 29031  Edgcedg 29082  UMGraphcumgr 29116  USGraphcusgr 29184  ComplUSGraphccusgr 29445  Cyclesccycls 29821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-xneg 13175  df-xadd 13176  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-s4 14899  df-edg 29083  df-uhgr 29093  df-upgr 29117  df-umgr 29118  df-usgr 29186  df-nbgr 29368  df-uvtx 29421  df-cplgr 29446  df-cusgr 29447  df-wlks 29635  df-trls 29728  df-pths 29752  df-cycls 29823
This theorem is referenced by:  cusgracyclt3v  35124
  Copyright terms: Public domain W3C validator