| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74i | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.74i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.74i | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | pm5.74 270 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitrd 279 imbi2i 336 bibi2d 342 ibib 367 ibibr 368 pm5.4 388 pm5.42 543 anclb 545 ancrb 547 pm5.3 572 cases2 1047 cador 1608 equsalvw 2004 ax13b 2032 sbbiiev 2093 equsalv 2268 equsal 2415 2sb6rf 2471 sbcom3 2504 moeu 2576 ralbiia 3073 ceqsal 3476 ceqsalv 3478 ceqsralv 3479 clel2g 3616 clel4g 3620 dfdif3OLD 4071 csbie2df 4396 rabeqsnd 4623 ralsng 4629 snssb 4736 frinxp 5706 idrefALT 6066 dfom2 7808 dfacacn 10055 kmlem8 10071 kmlem13 10076 kmlem14 10077 axgroth2 10738 bnj1171 34969 bnj1253 34986 orbi2iALT 35660 filnetlem4 36357 wl-equsalvw 37514 lcmineqlem4 42008 dvrelog2b 42042 aks6d1c1 42092 aks6d1c4 42100 aks6d1c6lem3 42148 elintima 43629 ichexmpl2 47458 |
| Copyright terms: Public domain | W3C validator |