![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.74i | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.74i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.74i | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | pm5.74 270 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
3 | 1, 2 | mpbi 230 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bitrd 279 imbi2i 336 bibi2d 342 ibib 367 ibibr 368 pm5.4 388 pm5.42 543 anclb 545 ancrb 547 pm5.3 572 cases2 1048 cador 1605 equsalvw 2003 ax13b 2031 sbbiiev 2092 equsalv 2268 equsal 2425 2sb6rf 2481 sbcom3 2514 moeu 2586 ralbiia 3097 ceqsal 3527 ceqsalv 3529 ceqsralv 3531 clel2g 3672 clel4g 3676 elabg 3690 dfdif3OLD 4141 csbie2df 4466 rabeqsnd 4691 ralsng 4697 snssb 4807 frinxp 5782 idrefALT 6143 dfom2 7905 dfacacn 10211 kmlem8 10227 kmlem13 10232 kmlem14 10233 axgroth2 10894 bnj1171 34976 bnj1253 34993 orbi2iALT 35653 filnetlem4 36347 wl-equsalvw 37492 lcmineqlem4 41989 dvrelog2b 42023 aks6d1c1 42073 aks6d1c4 42081 aks6d1c6lem3 42129 elintima 43615 ichexmpl2 47344 |
Copyright terms: Public domain | W3C validator |