Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.74i | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.74i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.74i | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | pm5.74 269 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bitrd 278 imbi2i 336 bibi2d 343 ibib 368 ibibr 369 pm5.4 390 pm5.42 544 anclb 546 ancrb 548 pm5.3 573 cases2 1045 cador 1610 equsalvw 2007 ax13b 2035 sbcom3vv 2098 equsalv 2259 equsal 2417 2sb6rf 2473 sbcom3 2510 moeu 2583 ralbiia 3091 ceqsalv 3467 ceqsralv 3469 clel2g 3588 clel4g 3593 elabg 3607 dfdif3 4049 csbie2df 4374 ralsng 4609 frinxp 5669 idrefALT 6018 dfom2 7714 dfacacn 9897 kmlem8 9913 kmlem13 9918 kmlem14 9919 axgroth2 10581 rabeqsnd 30848 bnj1171 32980 bnj1253 32997 filnetlem4 34570 wl-equsalvw 35697 lcmineqlem4 40040 dvrelog2b 40074 elintima 41261 ichexmpl2 44922 |
Copyright terms: Public domain | W3C validator |