| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74i | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.74i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.74i | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | pm5.74 270 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitrd 279 imbi2i 336 bibi2d 342 ibib 367 ibibr 368 pm5.4 388 pm5.42 543 anclb 545 ancrb 547 pm5.3 572 cases2 1047 cador 1608 equsalvw 2003 ax13b 2031 sbbiiev 2092 equsalv 2267 equsal 2421 2sb6rf 2477 sbcom3 2510 moeu 2582 ralbiia 3080 ceqsal 3498 ceqsalv 3500 ceqsralv 3501 clel2g 3638 clel4g 3642 elabg 3655 dfdif3OLD 4093 csbie2df 4418 rabeqsnd 4645 ralsng 4651 snssb 4758 frinxp 5737 idrefALT 6100 dfom2 7863 dfacacn 10156 kmlem8 10172 kmlem13 10177 kmlem14 10178 axgroth2 10839 bnj1171 35031 bnj1253 35048 orbi2iALT 35707 filnetlem4 36399 wl-equsalvw 37556 lcmineqlem4 42045 dvrelog2b 42079 aks6d1c1 42129 aks6d1c4 42137 aks6d1c6lem3 42185 elintima 43677 ichexmpl2 47484 |
| Copyright terms: Public domain | W3C validator |