![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.74i | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.74i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.74i | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | pm5.74 270 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
3 | 1, 2 | mpbi 230 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bitrd 279 imbi2i 336 bibi2d 342 ibib 367 ibibr 368 pm5.4 388 pm5.42 543 anclb 545 ancrb 547 pm5.3 572 cases2 1047 cador 1605 equsalvw 2001 ax13b 2029 sbbiiev 2090 equsalv 2265 equsal 2420 2sb6rf 2476 sbcom3 2509 moeu 2581 ralbiia 3089 ceqsal 3517 ceqsalv 3519 ceqsralv 3520 clel2g 3659 clel4g 3663 elabg 3677 dfdif3OLD 4128 csbie2df 4449 rabeqsnd 4674 ralsng 4680 snssb 4787 frinxp 5771 idrefALT 6134 dfom2 7889 dfacacn 10180 kmlem8 10196 kmlem13 10201 kmlem14 10202 axgroth2 10863 bnj1171 34993 bnj1253 35010 orbi2iALT 35670 filnetlem4 36364 wl-equsalvw 37519 lcmineqlem4 42014 dvrelog2b 42048 aks6d1c1 42098 aks6d1c4 42106 aks6d1c6lem3 42154 elintima 43643 ichexmpl2 47395 |
Copyright terms: Public domain | W3C validator |