| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74i | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.74i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.74i | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | pm5.74 270 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitrd 279 imbi2i 336 bibi2d 342 ibib 367 ibibr 368 pm5.4 388 pm5.42 543 anclb 545 ancrb 547 pm5.3 572 cases2 1047 cador 1609 equsalvw 2005 ax13b 2033 sbbiiev 2097 equsalv 2272 equsal 2419 2sb6rf 2475 sbcom3 2508 moeu 2580 ralbiia 3077 ceqsal 3475 ceqsalv 3477 ceqsralv 3478 clel2g 3610 clel4g 3614 dfdif3OLD 4067 csbie2df 4392 rabeqsnd 4623 ralsng 4629 snssb 4736 frinxp 5704 idrefALT 6066 dfom2 7806 dfacacn 10042 kmlem8 10058 kmlem13 10063 kmlem14 10064 axgroth2 10725 bnj1171 35035 bnj1253 35052 orbi2iALT 35752 filnetlem4 36448 wl-equsalvw 37605 lcmineqlem4 42148 dvrelog2b 42182 aks6d1c1 42232 aks6d1c4 42240 aks6d1c6lem3 42288 elintima 43773 ichexmpl2 47597 |
| Copyright terms: Public domain | W3C validator |