Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.74i | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.74i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.74i | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | pm5.74 269 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bitrd 278 imbi2i 335 bibi2d 342 ibib 367 ibibr 368 pm5.4 389 pm5.42 543 anclb 545 ancrb 547 pm5.3 572 cases2 1044 cador 1611 equsalvw 2008 ax13b 2036 sbcom3vv 2100 equsalv 2262 equsal 2417 2sb6rf 2473 sbcom3 2510 moeu 2583 ralbiia 3089 ceqsalv 3457 ceqsralv 3459 clel2g 3581 clel4g 3586 elabg 3600 dfdif3 4045 csbie2df 4371 ralsng 4606 frinxp 5660 idrefALT 6007 dfom2 7689 dfacacn 9828 kmlem8 9844 kmlem13 9849 kmlem14 9850 axgroth2 10512 rabeqsnd 30749 bnj1171 32880 bnj1253 32897 filnetlem4 34497 wl-equsalvw 35624 lcmineqlem4 39968 dvrelog2b 40002 elintima 41150 ichexmpl2 44810 |
Copyright terms: Public domain | W3C validator |