| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74i | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.74i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.74i | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | pm5.74 270 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitrd 279 imbi2i 336 bibi2d 342 ibib 367 ibibr 368 pm5.4 388 pm5.42 543 anclb 545 ancrb 547 pm5.3 572 cases2 1047 cador 1609 equsalvw 2005 ax13b 2033 sbbiiev 2095 equsalv 2270 equsal 2417 2sb6rf 2473 sbcom3 2506 moeu 2578 ralbiia 3076 ceqsal 3474 ceqsalv 3476 ceqsralv 3477 clel2g 3614 clel4g 3618 dfdif3OLD 4068 csbie2df 4393 rabeqsnd 4622 ralsng 4628 snssb 4735 frinxp 5699 idrefALT 6060 dfom2 7798 dfacacn 10033 kmlem8 10049 kmlem13 10054 kmlem14 10055 axgroth2 10716 bnj1171 35010 bnj1253 35027 orbi2iALT 35727 filnetlem4 36421 wl-equsalvw 37578 lcmineqlem4 42071 dvrelog2b 42105 aks6d1c1 42155 aks6d1c4 42163 aks6d1c6lem3 42211 elintima 43692 ichexmpl2 47507 |
| Copyright terms: Public domain | W3C validator |