![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.74i | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.74i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.74i | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | pm5.74 271 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
3 | 1, 2 | mpbi 231 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 |
This theorem is referenced by: bitrd 280 imbi2i 337 bibi2d 344 ibib 369 ibibr 370 pm5.4 390 pm5.42 544 anclb 546 ancrb 548 pm5.3 573 cases2 1040 cador 1590 equsalvw 1987 ax13b 2016 sbcom3vv 2073 equsalv 2231 equsal 2395 2sb6rf 2454 2sb6rfOLD 2455 sbcom3 2502 moeu 2628 ralbiia 3131 dfdif3 4012 frinxp 5520 idrefALT 5849 dfom2 7438 dfacacn 9413 kmlem8 9429 kmlem13 9434 kmlem14 9435 axgroth2 10093 rabeqsnd 29956 bnj1171 31886 bnj1253 31903 filnetlem4 33338 wl-equsalvw 34310 elintima 39483 ichexmpl2 43114 |
Copyright terms: Public domain | W3C validator |