| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74i | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.74i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.74i | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | pm5.74 270 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitrd 279 imbi2i 336 bibi2d 342 ibib 367 ibibr 368 pm5.4 388 pm5.42 543 anclb 545 ancrb 547 pm5.3 572 cases2 1047 cador 1608 equsalvw 2004 ax13b 2032 sbbiiev 2093 equsalv 2268 equsal 2416 2sb6rf 2472 sbcom3 2505 moeu 2577 ralbiia 3074 ceqsal 3488 ceqsalv 3490 ceqsralv 3491 clel2g 3628 clel4g 3632 dfdif3OLD 4084 csbie2df 4409 rabeqsnd 4636 ralsng 4642 snssb 4749 frinxp 5724 idrefALT 6087 dfom2 7847 dfacacn 10102 kmlem8 10118 kmlem13 10123 kmlem14 10124 axgroth2 10785 bnj1171 34997 bnj1253 35014 orbi2iALT 35679 filnetlem4 36376 wl-equsalvw 37533 lcmineqlem4 42027 dvrelog2b 42061 aks6d1c1 42111 aks6d1c4 42119 aks6d1c6lem3 42167 elintima 43649 ichexmpl2 47475 |
| Copyright terms: Public domain | W3C validator |