| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74i | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.74i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.74i | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | pm5.74 270 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitrd 279 imbi2i 336 bibi2d 342 ibib 367 ibibr 368 pm5.4 388 pm5.42 543 anclb 545 ancrb 547 pm5.3 572 cases2 1047 cador 1608 equsalvw 2004 ax13b 2032 sbbiiev 2093 equsalv 2268 equsal 2415 2sb6rf 2471 sbcom3 2504 moeu 2576 ralbiia 3073 ceqsal 3485 ceqsalv 3487 ceqsralv 3488 clel2g 3625 clel4g 3629 dfdif3OLD 4081 csbie2df 4406 rabeqsnd 4633 ralsng 4639 snssb 4746 frinxp 5721 idrefALT 6084 dfom2 7844 dfacacn 10095 kmlem8 10111 kmlem13 10116 kmlem14 10117 axgroth2 10778 bnj1171 34990 bnj1253 35007 orbi2iALT 35672 filnetlem4 36369 wl-equsalvw 37526 lcmineqlem4 42020 dvrelog2b 42054 aks6d1c1 42104 aks6d1c4 42112 aks6d1c6lem3 42160 elintima 43642 ichexmpl2 47471 |
| Copyright terms: Public domain | W3C validator |