Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.74i | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (inference form). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.74i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.74i | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | pm5.74 273 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
3 | 1, 2 | mpbi 233 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: bitrd 282 imbi2i 339 bibi2d 346 ibib 371 ibibr 372 pm5.4 393 pm5.42 547 anclb 549 ancrb 551 pm5.3 576 cases2 1048 cador 1615 equsalvw 2012 ax13b 2040 sbcom3vv 2102 equsalv 2264 equsal 2416 2sb6rf 2472 sbcom3 2509 moeu 2582 ralbiia 3087 ceqsalv 3443 ceqsralv 3445 clel2g 3566 clel4g 3571 elabg 3585 dfdif3 4029 csbie2df 4355 ralsng 4589 frinxp 5631 idrefALT 5978 dfom2 7646 dfacacn 9755 kmlem8 9771 kmlem13 9776 kmlem14 9777 axgroth2 10439 rabeqsnd 30567 bnj1171 32693 bnj1253 32710 filnetlem4 34307 wl-equsalvw 35434 lcmineqlem4 39774 dvrelog2b 39807 elintima 40938 ichexmpl2 44595 |
Copyright terms: Public domain | W3C validator |