Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clss2lem Structured version   Visualization version   GIF version

Theorem clss2lem 42938
Description: The closure of a property is a superset of the closure of a less restrictive property. (Contributed by RP, 24-Jul-2020.)
Hypothesis
Ref Expression
clss2lem.1 (𝜑 → (𝜒𝜓))
Assertion
Ref Expression
clss2lem (𝜑 {𝑥 ∣ (𝑋𝑥𝜓)} ⊆ {𝑥 ∣ (𝑋𝑥𝜒)})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝑋(𝑥)

Proof of Theorem clss2lem
StepHypRef Expression
1 clss2lem.1 . . . . 5 (𝜑 → (𝜒𝜓))
21adantld 490 . . . 4 (𝜑 → ((𝑋𝑥𝜒) → 𝜓))
32alrimiv 1922 . . 3 (𝜑 → ∀𝑥((𝑋𝑥𝜒) → 𝜓))
4 pm5.3 572 . . . . 5 (((𝑋𝑥𝜒) → 𝜓) ↔ ((𝑋𝑥𝜒) → (𝑋𝑥𝜓)))
54albii 1813 . . . 4 (∀𝑥((𝑋𝑥𝜒) → 𝜓) ↔ ∀𝑥((𝑋𝑥𝜒) → (𝑋𝑥𝜓)))
6 ss2ab 4051 . . . 4 ({𝑥 ∣ (𝑋𝑥𝜒)} ⊆ {𝑥 ∣ (𝑋𝑥𝜓)} ↔ ∀𝑥((𝑋𝑥𝜒) → (𝑋𝑥𝜓)))
75, 6bitr4i 278 . . 3 (∀𝑥((𝑋𝑥𝜒) → 𝜓) ↔ {𝑥 ∣ (𝑋𝑥𝜒)} ⊆ {𝑥 ∣ (𝑋𝑥𝜓)})
83, 7sylib 217 . 2 (𝜑 → {𝑥 ∣ (𝑋𝑥𝜒)} ⊆ {𝑥 ∣ (𝑋𝑥𝜓)})
9 intss 4966 . 2 ({𝑥 ∣ (𝑋𝑥𝜒)} ⊆ {𝑥 ∣ (𝑋𝑥𝜓)} → {𝑥 ∣ (𝑋𝑥𝜓)} ⊆ {𝑥 ∣ (𝑋𝑥𝜒)})
108, 9syl 17 1 (𝜑 {𝑥 ∣ (𝑋𝑥𝜓)} ⊆ {𝑥 ∣ (𝑋𝑥𝜒)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1531  {cab 2703  wss 3943   cint 4943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-v 3470  df-in 3950  df-ss 3960  df-int 4944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator