| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clss2lem | Structured version Visualization version GIF version | ||
| Description: The closure of a property is a superset of the closure of a less restrictive property. (Contributed by RP, 24-Jul-2020.) |
| Ref | Expression |
|---|---|
| clss2lem.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| Ref | Expression |
|---|---|
| clss2lem | ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clss2lem.1 | . . . . 5 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
| 2 | 1 | adantld 490 | . . . 4 ⊢ (𝜑 → ((𝑋 ⊆ 𝑥 ∧ 𝜒) → 𝜓)) |
| 3 | 2 | alrimiv 1927 | . . 3 ⊢ (𝜑 → ∀𝑥((𝑋 ⊆ 𝑥 ∧ 𝜒) → 𝜓)) |
| 4 | pm5.3 572 | . . . . 5 ⊢ (((𝑋 ⊆ 𝑥 ∧ 𝜒) → 𝜓) ↔ ((𝑋 ⊆ 𝑥 ∧ 𝜒) → (𝑋 ⊆ 𝑥 ∧ 𝜓))) | |
| 5 | 4 | albii 1819 | . . . 4 ⊢ (∀𝑥((𝑋 ⊆ 𝑥 ∧ 𝜒) → 𝜓) ↔ ∀𝑥((𝑋 ⊆ 𝑥 ∧ 𝜒) → (𝑋 ⊆ 𝑥 ∧ 𝜓))) |
| 6 | ss2ab 4062 | . . . 4 ⊢ ({𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)} ⊆ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ↔ ∀𝑥((𝑋 ⊆ 𝑥 ∧ 𝜒) → (𝑋 ⊆ 𝑥 ∧ 𝜓))) | |
| 7 | 5, 6 | bitr4i 278 | . . 3 ⊢ (∀𝑥((𝑋 ⊆ 𝑥 ∧ 𝜒) → 𝜓) ↔ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)} ⊆ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) |
| 8 | 3, 7 | sylib 218 | . 2 ⊢ (𝜑 → {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)} ⊆ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) |
| 9 | intss 4969 | . 2 ⊢ ({𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)} ⊆ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)}) | |
| 10 | 8, 9 | syl 17 | 1 ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 {cab 2714 ⊆ wss 3951 ∩ cint 4946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-ss 3968 df-int 4947 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |