![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clss2lem | Structured version Visualization version GIF version |
Description: The closure of a property is a superset of the closure of a less restrictive property. (Contributed by RP, 24-Jul-2020.) |
Ref | Expression |
---|---|
clss2lem.1 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
Ref | Expression |
---|---|
clss2lem | ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clss2lem.1 | . . . . 5 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
2 | 1 | adantld 490 | . . . 4 ⊢ (𝜑 → ((𝑋 ⊆ 𝑥 ∧ 𝜒) → 𝜓)) |
3 | 2 | alrimiv 1922 | . . 3 ⊢ (𝜑 → ∀𝑥((𝑋 ⊆ 𝑥 ∧ 𝜒) → 𝜓)) |
4 | pm5.3 572 | . . . . 5 ⊢ (((𝑋 ⊆ 𝑥 ∧ 𝜒) → 𝜓) ↔ ((𝑋 ⊆ 𝑥 ∧ 𝜒) → (𝑋 ⊆ 𝑥 ∧ 𝜓))) | |
5 | 4 | albii 1813 | . . . 4 ⊢ (∀𝑥((𝑋 ⊆ 𝑥 ∧ 𝜒) → 𝜓) ↔ ∀𝑥((𝑋 ⊆ 𝑥 ∧ 𝜒) → (𝑋 ⊆ 𝑥 ∧ 𝜓))) |
6 | ss2ab 4051 | . . . 4 ⊢ ({𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)} ⊆ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ↔ ∀𝑥((𝑋 ⊆ 𝑥 ∧ 𝜒) → (𝑋 ⊆ 𝑥 ∧ 𝜓))) | |
7 | 5, 6 | bitr4i 278 | . . 3 ⊢ (∀𝑥((𝑋 ⊆ 𝑥 ∧ 𝜒) → 𝜓) ↔ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)} ⊆ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) |
8 | 3, 7 | sylib 217 | . 2 ⊢ (𝜑 → {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)} ⊆ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) |
9 | intss 4966 | . 2 ⊢ ({𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)} ⊆ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)}) | |
10 | 8, 9 | syl 17 | 1 ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1531 {cab 2703 ⊆ wss 3943 ∩ cint 4943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-v 3470 df-in 3950 df-ss 3960 df-int 4944 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |