MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdistanda Structured version   Visualization version   GIF version

Theorem imdistanda 571
Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.)
Hypothesis
Ref Expression
imdistanda.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
imdistanda (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))

Proof of Theorem imdistanda
StepHypRef Expression
1 imdistanda.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21ex 412 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32imdistand 570 1 (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  predtrss  6222  cfub  9989  cflm  9990  fzind  12401  uzss  12587  cau3lem  15047  supcvg  15549  eulerthlem2  16464  pgpfac1lem3  19661  iscnp4  22395  cncls2  22405  cncls  22406  cnntr  22407  1stcelcls  22593  cnpflf  23133  fclsnei  23151  cnpfcf  23173  alexsublem  23176  iscau4  24424  caussi  24442  equivcfil  24444  ismbf3d  24799  i1fmullem  24839  abelth  25581  ocsh  29624  fpwrelmap  31047  locfinreflem  31769  nosupbnd1lem5  33894  matunitlindf  35754  isdrngo3  36096  keridl  36169  pmapjat1  37846
  Copyright terms: Public domain W3C validator