MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdistanda Structured version   Visualization version   GIF version

Theorem imdistanda 571
Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.)
Hypothesis
Ref Expression
imdistanda.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
imdistanda (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))

Proof of Theorem imdistanda
StepHypRef Expression
1 imdistanda.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21ex 412 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32imdistand 570 1 (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  predtrss  6311  cfub  10263  cflm  10264  fzind  12691  uzss  12875  cau3lem  15373  supcvg  15872  eulerthlem2  16801  pgpfac1lem3  20060  iscnp4  23201  cncls2  23211  cncls  23212  cnntr  23213  1stcelcls  23399  cnpflf  23939  fclsnei  23957  cnpfcf  23979  alexsublem  23982  iscau4  25231  caussi  25249  equivcfil  25251  ismbf3d  25607  i1fmullem  25647  abelth  26403  nosupbnd1lem5  27676  ocsh  31264  fpwrelmap  32710  locfinreflem  33871  matunitlindf  37642  isdrngo3  37983  keridl  38056  pmapjat1  39872
  Copyright terms: Public domain W3C validator