![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imdistanda | Structured version Visualization version GIF version |
Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.) |
Ref | Expression |
---|---|
imdistanda.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
imdistanda | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistanda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imdistand 570 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: predtrss 6344 cfub 10286 cflm 10287 fzind 12713 uzss 12898 cau3lem 15389 supcvg 15888 eulerthlem2 16815 pgpfac1lem3 20111 iscnp4 23286 cncls2 23296 cncls 23297 cnntr 23298 1stcelcls 23484 cnpflf 24024 fclsnei 24042 cnpfcf 24064 alexsublem 24067 iscau4 25326 caussi 25344 equivcfil 25346 ismbf3d 25702 i1fmullem 25742 abelth 26499 nosupbnd1lem5 27771 ocsh 31311 fpwrelmap 32750 locfinreflem 33800 matunitlindf 37604 isdrngo3 37945 keridl 38018 pmapjat1 39835 |
Copyright terms: Public domain | W3C validator |