| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imdistanda | Structured version Visualization version GIF version | ||
| Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| imdistanda.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| imdistanda | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistanda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imdistand 570 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: predtrss 6295 cfub 10202 cflm 10203 fzind 12632 uzss 12816 cau3lem 15321 supcvg 15822 eulerthlem2 16752 pgpfac1lem3 20009 iscnp4 23150 cncls2 23160 cncls 23161 cnntr 23162 1stcelcls 23348 cnpflf 23888 fclsnei 23906 cnpfcf 23928 alexsublem 23931 iscau4 25179 caussi 25197 equivcfil 25199 ismbf3d 25555 i1fmullem 25595 abelth 26351 nosupbnd1lem5 27624 ocsh 31212 fpwrelmap 32656 locfinreflem 33830 matunitlindf 37612 isdrngo3 37953 keridl 38026 pmapjat1 39847 |
| Copyright terms: Public domain | W3C validator |