MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdistanda Structured version   Visualization version   GIF version

Theorem imdistanda 571
Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.)
Hypothesis
Ref Expression
imdistanda.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
imdistanda (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))

Proof of Theorem imdistanda
StepHypRef Expression
1 imdistanda.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21ex 412 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32imdistand 570 1 (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  predtrss  6322  cfub  10271  cflm  10272  fzind  12699  uzss  12883  cau3lem  15375  supcvg  15874  eulerthlem2  16801  pgpfac1lem3  20065  iscnp4  23217  cncls2  23227  cncls  23228  cnntr  23229  1stcelcls  23415  cnpflf  23955  fclsnei  23973  cnpfcf  23995  alexsublem  23998  iscau4  25249  caussi  25267  equivcfil  25269  ismbf3d  25625  i1fmullem  25665  abelth  26421  nosupbnd1lem5  27693  ocsh  31230  fpwrelmap  32679  locfinreflem  33798  matunitlindf  37584  isdrngo3  37925  keridl  37998  pmapjat1  39814
  Copyright terms: Public domain W3C validator