MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdistanda Structured version   Visualization version   GIF version

Theorem imdistanda 571
Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.)
Hypothesis
Ref Expression
imdistanda.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
imdistanda (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))

Proof of Theorem imdistanda
StepHypRef Expression
1 imdistanda.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21ex 412 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32imdistand 570 1 (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  predtrss  6295  cfub  10202  cflm  10203  fzind  12632  uzss  12816  cau3lem  15321  supcvg  15822  eulerthlem2  16752  pgpfac1lem3  20009  iscnp4  23150  cncls2  23160  cncls  23161  cnntr  23162  1stcelcls  23348  cnpflf  23888  fclsnei  23906  cnpfcf  23928  alexsublem  23931  iscau4  25179  caussi  25197  equivcfil  25199  ismbf3d  25555  i1fmullem  25595  abelth  26351  nosupbnd1lem5  27624  ocsh  31212  fpwrelmap  32656  locfinreflem  33830  matunitlindf  37612  isdrngo3  37953  keridl  38026  pmapjat1  39847
  Copyright terms: Public domain W3C validator