Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imdistanda | Structured version Visualization version GIF version |
Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.) |
Ref | Expression |
---|---|
imdistanda.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
imdistanda | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistanda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imdistand 570 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: predtrss 6222 cfub 9989 cflm 9990 fzind 12401 uzss 12587 cau3lem 15047 supcvg 15549 eulerthlem2 16464 pgpfac1lem3 19661 iscnp4 22395 cncls2 22405 cncls 22406 cnntr 22407 1stcelcls 22593 cnpflf 23133 fclsnei 23151 cnpfcf 23173 alexsublem 23176 iscau4 24424 caussi 24442 equivcfil 24444 ismbf3d 24799 i1fmullem 24839 abelth 25581 ocsh 29624 fpwrelmap 31047 locfinreflem 31769 nosupbnd1lem5 33894 matunitlindf 35754 isdrngo3 36096 keridl 36169 pmapjat1 37846 |
Copyright terms: Public domain | W3C validator |