| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imdistanda | Structured version Visualization version GIF version | ||
| Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| imdistanda.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| imdistanda | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistanda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imdistand 570 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: predtrss 6265 cfub 10132 cflm 10133 fzind 12563 uzss 12747 cau3lem 15254 supcvg 15755 eulerthlem2 16685 pgpfac1lem3 19984 iscnp4 23171 cncls2 23181 cncls 23182 cnntr 23183 1stcelcls 23369 cnpflf 23909 fclsnei 23927 cnpfcf 23949 alexsublem 23952 iscau4 25199 caussi 25217 equivcfil 25219 ismbf3d 25575 i1fmullem 25615 abelth 26371 nosupbnd1lem5 27644 ocsh 31253 fpwrelmap 32706 locfinreflem 33843 matunitlindf 37637 isdrngo3 37978 keridl 38051 pmapjat1 39871 grlimpredg 48008 |
| Copyright terms: Public domain | W3C validator |