![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imdistanda | Structured version Visualization version GIF version |
Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.) |
Ref | Expression |
---|---|
imdistanda.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
imdistanda | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistanda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imdistand 570 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: predtrss 6354 cfub 10318 cflm 10319 fzind 12741 uzss 12926 cau3lem 15403 supcvg 15904 eulerthlem2 16829 pgpfac1lem3 20121 iscnp4 23292 cncls2 23302 cncls 23303 cnntr 23304 1stcelcls 23490 cnpflf 24030 fclsnei 24048 cnpfcf 24070 alexsublem 24073 iscau4 25332 caussi 25350 equivcfil 25352 ismbf3d 25708 i1fmullem 25748 abelth 26503 nosupbnd1lem5 27775 ocsh 31315 fpwrelmap 32747 locfinreflem 33786 matunitlindf 37578 isdrngo3 37919 keridl 37992 pmapjat1 39810 |
Copyright terms: Public domain | W3C validator |