![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imdistanda | Structured version Visualization version GIF version |
Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.) |
Ref | Expression |
---|---|
imdistanda.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
imdistanda | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistanda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 411 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imdistand 569 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: predtrss 6330 cfub 10274 cflm 10275 fzind 12693 uzss 12878 cau3lem 15337 supcvg 15838 eulerthlem2 16754 pgpfac1lem3 20046 iscnp4 23211 cncls2 23221 cncls 23222 cnntr 23223 1stcelcls 23409 cnpflf 23949 fclsnei 23967 cnpfcf 23989 alexsublem 23992 iscau4 25251 caussi 25269 equivcfil 25271 ismbf3d 25627 i1fmullem 25667 abelth 26423 nosupbnd1lem5 27691 ocsh 31165 fpwrelmap 32597 locfinreflem 33572 matunitlindf 37222 isdrngo3 37563 keridl 37636 pmapjat1 39456 |
Copyright terms: Public domain | W3C validator |