| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imdistanda | Structured version Visualization version GIF version | ||
| Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| imdistanda.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| imdistanda | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistanda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imdistand 570 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: predtrss 6322 cfub 10271 cflm 10272 fzind 12699 uzss 12883 cau3lem 15375 supcvg 15874 eulerthlem2 16801 pgpfac1lem3 20065 iscnp4 23217 cncls2 23227 cncls 23228 cnntr 23229 1stcelcls 23415 cnpflf 23955 fclsnei 23973 cnpfcf 23995 alexsublem 23998 iscau4 25249 caussi 25267 equivcfil 25269 ismbf3d 25625 i1fmullem 25665 abelth 26421 nosupbnd1lem5 27693 ocsh 31230 fpwrelmap 32679 locfinreflem 33798 matunitlindf 37584 isdrngo3 37925 keridl 37998 pmapjat1 39814 |
| Copyright terms: Public domain | W3C validator |