| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imdistanda | Structured version Visualization version GIF version | ||
| Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| imdistanda.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| imdistanda | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistanda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imdistand 570 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: predtrss 6274 cfub 10162 cflm 10163 fzind 12592 uzss 12776 cau3lem 15280 supcvg 15781 eulerthlem2 16711 pgpfac1lem3 19976 iscnp4 23166 cncls2 23176 cncls 23177 cnntr 23178 1stcelcls 23364 cnpflf 23904 fclsnei 23922 cnpfcf 23944 alexsublem 23947 iscau4 25195 caussi 25213 equivcfil 25215 ismbf3d 25571 i1fmullem 25611 abelth 26367 nosupbnd1lem5 27640 ocsh 31245 fpwrelmap 32689 locfinreflem 33806 matunitlindf 37597 isdrngo3 37938 keridl 38011 pmapjat1 39832 |
| Copyright terms: Public domain | W3C validator |