| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imdistanda | Structured version Visualization version GIF version | ||
| Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| imdistanda.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| imdistanda | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistanda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imdistand 570 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: predtrss 6298 cfub 10209 cflm 10210 fzind 12639 uzss 12823 cau3lem 15328 supcvg 15829 eulerthlem2 16759 pgpfac1lem3 20016 iscnp4 23157 cncls2 23167 cncls 23168 cnntr 23169 1stcelcls 23355 cnpflf 23895 fclsnei 23913 cnpfcf 23935 alexsublem 23938 iscau4 25186 caussi 25204 equivcfil 25206 ismbf3d 25562 i1fmullem 25602 abelth 26358 nosupbnd1lem5 27631 ocsh 31219 fpwrelmap 32663 locfinreflem 33837 matunitlindf 37619 isdrngo3 37960 keridl 38033 pmapjat1 39854 |
| Copyright terms: Public domain | W3C validator |