| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imdistanda | Structured version Visualization version GIF version | ||
| Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| imdistanda.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| imdistanda | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistanda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imdistand 570 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: predtrss 6311 cfub 10263 cflm 10264 fzind 12691 uzss 12875 cau3lem 15373 supcvg 15872 eulerthlem2 16801 pgpfac1lem3 20060 iscnp4 23201 cncls2 23211 cncls 23212 cnntr 23213 1stcelcls 23399 cnpflf 23939 fclsnei 23957 cnpfcf 23979 alexsublem 23982 iscau4 25231 caussi 25249 equivcfil 25251 ismbf3d 25607 i1fmullem 25647 abelth 26403 nosupbnd1lem5 27676 ocsh 31264 fpwrelmap 32710 locfinreflem 33871 matunitlindf 37642 isdrngo3 37983 keridl 38056 pmapjat1 39872 |
| Copyright terms: Public domain | W3C validator |