| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imdistanda | Structured version Visualization version GIF version | ||
| Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| imdistanda.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| imdistanda | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistanda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imdistand 570 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: predtrss 6275 cfub 10146 cflm 10147 fzind 12577 uzss 12761 cau3lem 15268 supcvg 15769 eulerthlem2 16699 pgpfac1lem3 19997 iscnp4 23184 cncls2 23194 cncls 23195 cnntr 23196 1stcelcls 23382 cnpflf 23922 fclsnei 23940 cnpfcf 23962 alexsublem 23965 iscau4 25212 caussi 25230 equivcfil 25232 ismbf3d 25588 i1fmullem 25628 abelth 26384 nosupbnd1lem5 27657 ocsh 31270 fpwrelmap 32723 locfinreflem 33860 matunitlindf 37664 isdrngo3 38005 keridl 38078 pmapjat1 39958 grlimpredg 48103 |
| Copyright terms: Public domain | W3C validator |