Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imdistanda | Structured version Visualization version GIF version |
Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011.) |
Ref | Expression |
---|---|
imdistanda.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
imdistanda | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistanda.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 414 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imdistand 572 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: predtrss 6240 cfub 10051 cflm 10052 fzind 12464 uzss 12651 cau3lem 15111 supcvg 15613 eulerthlem2 16528 pgpfac1lem3 19725 iscnp4 22459 cncls2 22469 cncls 22470 cnntr 22471 1stcelcls 22657 cnpflf 23197 fclsnei 23215 cnpfcf 23237 alexsublem 23240 iscau4 24488 caussi 24506 equivcfil 24508 ismbf3d 24863 i1fmullem 24903 abelth 25645 ocsh 29690 fpwrelmap 31113 locfinreflem 31835 nosupbnd1lem5 33960 matunitlindf 35819 isdrngo3 36161 keridl 36234 pmapjat1 37909 |
Copyright terms: Public domain | W3C validator |