Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.62 | Structured version Visualization version GIF version |
Description: Theorem *5.62 of [WhiteheadRussell] p. 125. (Contributed by Roy F. Longton, 21-Jun-2005.) |
Ref | Expression |
---|---|
pm5.62 | ⊢ (((𝜑 ∧ 𝜓) ∨ ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid 891 | . 2 ⊢ (𝜓 ∨ ¬ 𝜓) | |
2 | ordir 1003 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ ¬ 𝜓) ↔ ((𝜑 ∨ ¬ 𝜓) ∧ (𝜓 ∨ ¬ 𝜓))) | |
3 | 1, 2 | mpbiran2 706 | 1 ⊢ (((𝜑 ∧ 𝜓) ∨ ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |