MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.62 Structured version   Visualization version   GIF version

Theorem pm5.62 1016
Description: Theorem *5.62 of [WhiteheadRussell] p. 125. (Contributed by Roy F. Longton, 21-Jun-2005.)
Assertion
Ref Expression
pm5.62 (((𝜑𝜓) ∨ ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓))

Proof of Theorem pm5.62
StepHypRef Expression
1 exmid 892 . 2 (𝜓 ∨ ¬ 𝜓)
2 ordir 1004 . 2 (((𝜑𝜓) ∨ ¬ 𝜓) ↔ ((𝜑 ∨ ¬ 𝜓) ∧ (𝜓 ∨ ¬ 𝜓)))
31, 2mpbiran2 707 1 (((𝜑𝜓) ∨ ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator