Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpbiran2 | Structured version Visualization version GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) |
Ref | Expression |
---|---|
mpbiran2.1 | ⊢ 𝜒 |
mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran2.1 | . 2 ⊢ 𝜒 | |
2 | mpbiran2.2 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
3 | 2 | biancomi 464 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
4 | 1, 3 | mpbiran 707 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: pm5.62 1017 rabtru 3626 reueq 3677 ss0b 4337 eusv1 5323 eusv2nf 5327 eusv2 5328 dfid2 5502 opthprc 5662 sosn 5684 fdmrn 6662 f1cnvcnv 6710 fores 6728 f1orn 6756 funfv 6887 dfoprab2 7365 elxp7 7898 tpostpos 8093 frrlem11 8143 canthwe 10457 opelreal 10936 elreal2 10938 eqresr 10943 elnn1uz2 12715 faclbnd4lem1 14057 isprm2 16436 joindm 18142 meetdm 18156 symgbas0 19045 toptopon 22115 ist1-3 22549 perfcls 22565 prdsxmetlem 23570 rusgrprc 28006 hhsssh2 29681 choc0 29737 chocnul 29739 shlesb1i 29797 adjeu 30300 isarchi 31485 derang0 33180 dfon3 34243 brtxpsd 34245 topmeet 34602 filnetlem2 34617 filnetlem3 34618 bj-rabtrALT 35167 bj-snsetex 35201 bj-dfid2ALT 35284 relowlpssretop 35583 poimirlem28 35853 fdc 35951 0totbnd 35979 heiborlem3 36019 cossssid 36681 cnvrefrelcoss2 36751 dfdisjALTV 36927 dfeldisj2 36932 dfeldisj3 36933 dfeldisj4 36934 disjres 36958 disjxrn 36960 dfantisymrel4 36975 dfantisymrel5 36976 antisymrelres 36977 ifpid3g 41312 elintima 41474 |
Copyright terms: Public domain | W3C validator |