| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbiran2 | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) |
| Ref | Expression |
|---|---|
| mpbiran2.1 | ⊢ 𝜒 |
| mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran2.1 | . 2 ⊢ 𝜒 | |
| 2 | mpbiran2.2 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 3 | 2 | biancomi 462 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
| 4 | 1, 3 | mpbiran 709 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.62 1020 rabtru 3647 reueq 3699 ss0b 4354 eusv1 5333 eusv2nf 5337 eusv2 5338 dfid2 5520 opthprc 5687 sosn 5710 fdmrn 6687 f1cnvcnv 6733 fores 6750 f1orn 6778 funfv 6914 dfoprab2 7411 elxp7 7966 tpostpos 8186 frrlem11 8236 canthwe 10564 opelreal 11043 elreal2 11045 eqresr 11050 elnn1uz2 12844 faclbnd4lem1 14218 isprm2 16611 joindm 18297 meetdm 18311 symgbas0 19286 toptopon 22820 ist1-3 23252 perfcls 23268 prdsxmetlem 24272 eln0s 28274 rusgrprc 29554 hhsssh2 31232 choc0 31288 chocnul 31290 shlesb1i 31348 adjeu 31851 isarchi 33134 derang0 35141 dfon3 35865 brtxpsd 35867 topmeet 36337 filnetlem2 36352 filnetlem3 36353 bj-rabtrALT 36904 bj-snsetex 36936 bj-dfid2ALT 37038 relowlpssretop 37337 poimirlem28 37627 fdc 37724 0totbnd 37752 heiborlem3 37792 cossssid 38443 cnvrefrelcoss2 38513 dfdisjALTV 38690 dfeldisj2 38695 dfeldisj3 38696 dfeldisj4 38697 disjres 38721 disjxrn 38723 dfantisymrel4 38738 dfantisymrel5 38739 antisymrelres 38740 ifpid3g 43465 elintima 43626 brpermmodel 44977 0funcALT 49074 |
| Copyright terms: Public domain | W3C validator |