![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpbiran2 | Structured version Visualization version GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) |
Ref | Expression |
---|---|
mpbiran2.1 | ⊢ 𝜒 |
mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran2.1 | . 2 ⊢ 𝜒 | |
2 | mpbiran2.2 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
3 | 2 | biancomi 462 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
4 | 1, 3 | mpbiran 709 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm5.62 1020 rabtru 3692 reueq 3746 ss0b 4407 eusv1 5397 eusv2nf 5401 eusv2 5402 dfid2 5585 opthprc 5753 sosn 5775 fdmrn 6768 f1cnvcnv 6814 fores 6831 f1orn 6859 funfv 6996 dfoprab2 7491 elxp7 8048 tpostpos 8270 frrlem11 8320 canthwe 10689 opelreal 11168 elreal2 11170 eqresr 11175 elnn1uz2 12965 faclbnd4lem1 14329 isprm2 16716 joindm 18433 meetdm 18447 symgbas0 19421 toptopon 22939 ist1-3 23373 perfcls 23389 prdsxmetlem 24394 eln0s 28373 rusgrprc 29623 hhsssh2 31299 choc0 31355 chocnul 31357 shlesb1i 31415 adjeu 31918 isarchi 33172 derang0 35154 dfon3 35874 brtxpsd 35876 topmeet 36347 filnetlem2 36362 filnetlem3 36363 bj-rabtrALT 36914 bj-snsetex 36946 bj-dfid2ALT 37048 relowlpssretop 37347 poimirlem28 37635 fdc 37732 0totbnd 37760 heiborlem3 37800 cossssid 38449 cnvrefrelcoss2 38519 dfdisjALTV 38695 dfeldisj2 38700 dfeldisj3 38701 dfeldisj4 38702 disjres 38726 disjxrn 38728 dfantisymrel4 38743 dfantisymrel5 38744 antisymrelres 38745 ifpid3g 43482 elintima 43643 |
Copyright terms: Public domain | W3C validator |