| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbiran2 | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) |
| Ref | Expression |
|---|---|
| mpbiran2.1 | ⊢ 𝜒 |
| mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran2.1 | . 2 ⊢ 𝜒 | |
| 2 | mpbiran2.2 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 3 | 2 | biancomi 462 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
| 4 | 1, 3 | mpbiran 709 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.62 1020 rabtru 3659 reueq 3711 ss0b 4367 eusv1 5349 eusv2nf 5353 eusv2 5354 dfid2 5538 opthprc 5705 sosn 5728 fdmrn 6722 f1cnvcnv 6768 fores 6785 f1orn 6813 funfv 6951 dfoprab2 7450 elxp7 8006 tpostpos 8228 frrlem11 8278 canthwe 10611 opelreal 11090 elreal2 11092 eqresr 11097 elnn1uz2 12891 faclbnd4lem1 14265 isprm2 16659 joindm 18341 meetdm 18355 symgbas0 19326 toptopon 22811 ist1-3 23243 perfcls 23259 prdsxmetlem 24263 eln0s 28258 rusgrprc 29525 hhsssh2 31206 choc0 31262 chocnul 31264 shlesb1i 31322 adjeu 31825 isarchi 33143 derang0 35163 dfon3 35887 brtxpsd 35889 topmeet 36359 filnetlem2 36374 filnetlem3 36375 bj-rabtrALT 36926 bj-snsetex 36958 bj-dfid2ALT 37060 relowlpssretop 37359 poimirlem28 37649 fdc 37746 0totbnd 37774 heiborlem3 37814 cossssid 38465 cnvrefrelcoss2 38535 dfdisjALTV 38712 dfeldisj2 38717 dfeldisj3 38718 dfeldisj4 38719 disjres 38743 disjxrn 38745 dfantisymrel4 38760 dfantisymrel5 38761 antisymrelres 38762 ifpid3g 43488 elintima 43649 brpermmodel 45000 0funcALT 49081 |
| Copyright terms: Public domain | W3C validator |