| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbiran2 | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) |
| Ref | Expression |
|---|---|
| mpbiran2.1 | ⊢ 𝜒 |
| mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran2.1 | . 2 ⊢ 𝜒 | |
| 2 | mpbiran2.2 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 3 | 2 | biancomi 462 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
| 4 | 1, 3 | mpbiran 709 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.62 1021 rabtru 3689 reueq 3743 ss0b 4401 eusv1 5391 eusv2nf 5395 eusv2 5396 dfid2 5580 opthprc 5749 sosn 5772 fdmrn 6767 f1cnvcnv 6813 fores 6830 f1orn 6858 funfv 6996 dfoprab2 7491 elxp7 8049 tpostpos 8271 frrlem11 8321 canthwe 10691 opelreal 11170 elreal2 11172 eqresr 11177 elnn1uz2 12967 faclbnd4lem1 14332 isprm2 16719 joindm 18420 meetdm 18434 symgbas0 19406 toptopon 22923 ist1-3 23357 perfcls 23373 prdsxmetlem 24378 eln0s 28358 rusgrprc 29608 hhsssh2 31289 choc0 31345 chocnul 31347 shlesb1i 31405 adjeu 31908 isarchi 33189 derang0 35174 dfon3 35893 brtxpsd 35895 topmeet 36365 filnetlem2 36380 filnetlem3 36381 bj-rabtrALT 36932 bj-snsetex 36964 bj-dfid2ALT 37066 relowlpssretop 37365 poimirlem28 37655 fdc 37752 0totbnd 37780 heiborlem3 37820 cossssid 38468 cnvrefrelcoss2 38538 dfdisjALTV 38714 dfeldisj2 38719 dfeldisj3 38720 dfeldisj4 38721 disjres 38745 disjxrn 38747 dfantisymrel4 38762 dfantisymrel5 38763 antisymrelres 38764 ifpid3g 43505 elintima 43666 0funcALT 48921 |
| Copyright terms: Public domain | W3C validator |