| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbiran2 | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) |
| Ref | Expression |
|---|---|
| mpbiran2.1 | ⊢ 𝜒 |
| mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran2.1 | . 2 ⊢ 𝜒 | |
| 2 | mpbiran2.2 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 3 | 2 | biancomi 462 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
| 4 | 1, 3 | mpbiran 709 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.62 1020 rabtru 3673 reueq 3725 ss0b 4381 eusv1 5366 eusv2nf 5370 eusv2 5371 dfid2 5555 opthprc 5723 sosn 5746 fdmrn 6742 f1cnvcnv 6788 fores 6805 f1orn 6833 funfv 6971 dfoprab2 7470 elxp7 8028 tpostpos 8250 frrlem11 8300 canthwe 10670 opelreal 11149 elreal2 11151 eqresr 11156 elnn1uz2 12946 faclbnd4lem1 14316 isprm2 16706 joindm 18390 meetdm 18404 symgbas0 19375 toptopon 22860 ist1-3 23292 perfcls 23308 prdsxmetlem 24312 eln0s 28308 rusgrprc 29575 hhsssh2 31256 choc0 31312 chocnul 31314 shlesb1i 31372 adjeu 31875 isarchi 33185 derang0 35196 dfon3 35915 brtxpsd 35917 topmeet 36387 filnetlem2 36402 filnetlem3 36403 bj-rabtrALT 36954 bj-snsetex 36986 bj-dfid2ALT 37088 relowlpssretop 37387 poimirlem28 37677 fdc 37774 0totbnd 37802 heiborlem3 37842 cossssid 38490 cnvrefrelcoss2 38560 dfdisjALTV 38736 dfeldisj2 38741 dfeldisj3 38742 dfeldisj4 38743 disjres 38767 disjxrn 38769 dfantisymrel4 38784 dfantisymrel5 38785 antisymrelres 38786 ifpid3g 43483 elintima 43644 brpermmodel 44995 0funcALT 49020 |
| Copyright terms: Public domain | W3C validator |