| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbiran2 | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) |
| Ref | Expression |
|---|---|
| mpbiran2.1 | ⊢ 𝜒 |
| mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran2.1 | . 2 ⊢ 𝜒 | |
| 2 | mpbiran2.2 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 3 | 2 | biancomi 462 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
| 4 | 1, 3 | mpbiran 709 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.62 1020 rabtru 3641 reueq 3692 ss0b 4350 eusv1 5331 eusv2nf 5335 eusv2 5336 dfid2 5516 opthprc 5683 sosn 5706 fdmrn 6687 f1cnvcnv 6733 fores 6750 f1orn 6778 funfv 6915 dfoprab2 7410 elxp7 7962 tpostpos 8182 frrlem11 8232 canthwe 10549 opelreal 11028 elreal2 11030 eqresr 11035 elnn1uz2 12825 faclbnd4lem1 14202 isprm2 16595 joindm 18281 meetdm 18295 symgbas0 19303 toptopon 22833 ist1-3 23265 perfcls 23281 prdsxmetlem 24284 eln0s 28288 rusgrprc 29571 hhsssh2 31252 choc0 31308 chocnul 31310 shlesb1i 31368 adjeu 31871 isarchi 33158 derang0 35234 dfon3 35955 brtxpsd 35957 topmeet 36429 filnetlem2 36444 filnetlem3 36445 bj-rabtrALT 36996 bj-snsetex 37028 bj-dfid2ALT 37130 relowlpssretop 37429 poimirlem28 37709 fdc 37806 0totbnd 37834 heiborlem3 37874 cossssid 38590 cnvrefrelcoss2 38650 dfdisjALTV 38832 dfeldisj2 38837 dfeldisj3 38838 dfeldisj4 38839 disjres 38863 disjxrn 38865 dfantisymrel4 38880 dfantisymrel5 38881 antisymrelres 38882 ifpid3g 43610 elintima 43771 brpermmodel 45121 0funcALT 49214 |
| Copyright terms: Public domain | W3C validator |