| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbiran2 | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) |
| Ref | Expression |
|---|---|
| mpbiran2.1 | ⊢ 𝜒 |
| mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran2.1 | . 2 ⊢ 𝜒 | |
| 2 | mpbiran2.2 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 3 | 2 | biancomi 462 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
| 4 | 1, 3 | mpbiran 709 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.62 1020 rabtru 3645 reueq 3696 ss0b 4351 eusv1 5329 eusv2nf 5333 eusv2 5334 dfid2 5513 opthprc 5680 sosn 5703 fdmrn 6682 f1cnvcnv 6728 fores 6745 f1orn 6773 funfv 6909 dfoprab2 7404 elxp7 7956 tpostpos 8176 frrlem11 8226 canthwe 10542 opelreal 11021 elreal2 11023 eqresr 11028 elnn1uz2 12823 faclbnd4lem1 14200 isprm2 16593 joindm 18279 meetdm 18293 symgbas0 19302 toptopon 22833 ist1-3 23265 perfcls 23281 prdsxmetlem 24284 eln0s 28288 rusgrprc 29570 hhsssh2 31248 choc0 31304 chocnul 31306 shlesb1i 31364 adjeu 31867 isarchi 33149 derang0 35211 dfon3 35932 brtxpsd 35934 topmeet 36404 filnetlem2 36419 filnetlem3 36420 bj-rabtrALT 36971 bj-snsetex 37003 bj-dfid2ALT 37105 relowlpssretop 37404 poimirlem28 37694 fdc 37791 0totbnd 37819 heiborlem3 37859 cossssid 38510 cnvrefrelcoss2 38580 dfdisjALTV 38757 dfeldisj2 38762 dfeldisj3 38763 dfeldisj4 38764 disjres 38788 disjxrn 38790 dfantisymrel4 38805 dfantisymrel5 38806 antisymrelres 38807 ifpid3g 43531 elintima 43692 brpermmodel 45042 0funcALT 49126 |
| Copyright terms: Public domain | W3C validator |