Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpbiran2 | Structured version Visualization version GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) |
Ref | Expression |
---|---|
mpbiran2.1 | ⊢ 𝜒 |
mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran2.1 | . 2 ⊢ 𝜒 | |
2 | mpbiran2.2 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
3 | 2 | biancomi 462 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
4 | 1, 3 | mpbiran 705 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: pm5.62 1015 rabtru 3622 reueq 3675 ss0b 4336 eusv1 5317 eusv2nf 5321 eusv2 5322 dfid2 5490 opthprc 5650 sosn 5672 fdmrn 6628 f1cnvcnv 6676 fores 6694 f1orn 6722 funfv 6849 dfoprab2 7324 elxp7 7852 tpostpos 8046 frrlem11 8096 canthwe 10391 opelreal 10870 elreal2 10872 eqresr 10877 elnn1uz2 12647 faclbnd4lem1 13988 isprm2 16368 joindm 18074 meetdm 18088 symgbas0 18977 toptopon 22047 ist1-3 22481 perfcls 22497 prdsxmetlem 23502 rusgrprc 27938 hhsssh2 29611 choc0 29667 chocnul 29669 shlesb1i 29727 adjeu 30230 isarchi 31415 derang0 33110 dfon3 34173 brtxpsd 34175 topmeet 34532 filnetlem2 34547 filnetlem3 34548 bj-rabtrALT 35098 bj-snsetex 35132 bj-dfid2ALT 35215 relowlpssretop 35514 poimirlem28 35784 fdc 35882 0totbnd 35910 heiborlem3 35950 cossssid 36564 cnvrefrelcoss2 36630 dfdisjALTV 36803 dfeldisj2 36808 dfeldisj3 36809 dfeldisj4 36810 disjxrn 36834 ifpid3g 41061 elintima 41214 |
Copyright terms: Public domain | W3C validator |