![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpbiran2 | Structured version Visualization version GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) |
Ref | Expression |
---|---|
mpbiran2.1 | ⊢ 𝜒 |
mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran2.1 | . 2 ⊢ 𝜒 | |
2 | mpbiran2.2 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
3 | 2 | biancomi 462 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
4 | 1, 3 | mpbiran 708 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm5.62 1019 rabtru 3705 reueq 3759 ss0b 4424 eusv1 5409 eusv2nf 5413 eusv2 5414 dfid2 5595 opthprc 5764 sosn 5786 fdmrn 6779 f1cnvcnv 6826 fores 6844 f1orn 6872 funfv 7009 dfoprab2 7508 elxp7 8065 tpostpos 8287 frrlem11 8337 canthwe 10720 opelreal 11199 elreal2 11201 eqresr 11206 elnn1uz2 12990 faclbnd4lem1 14342 isprm2 16729 joindm 18445 meetdm 18459 symgbas0 19430 toptopon 22944 ist1-3 23378 perfcls 23394 prdsxmetlem 24399 eln0s 28376 rusgrprc 29626 hhsssh2 31302 choc0 31358 chocnul 31360 shlesb1i 31418 adjeu 31921 isarchi 33162 derang0 35137 dfon3 35856 brtxpsd 35858 topmeet 36330 filnetlem2 36345 filnetlem3 36346 bj-rabtrALT 36897 bj-snsetex 36929 bj-dfid2ALT 37031 relowlpssretop 37330 poimirlem28 37608 fdc 37705 0totbnd 37733 heiborlem3 37773 cossssid 38423 cnvrefrelcoss2 38493 dfdisjALTV 38669 dfeldisj2 38674 dfeldisj3 38675 dfeldisj4 38676 disjres 38700 disjxrn 38702 dfantisymrel4 38717 dfantisymrel5 38718 antisymrelres 38719 ifpid3g 43454 elintima 43615 |
Copyright terms: Public domain | W3C validator |