| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbiran2 | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) |
| Ref | Expression |
|---|---|
| mpbiran2.1 | ⊢ 𝜒 |
| mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran2.1 | . 2 ⊢ 𝜒 | |
| 2 | mpbiran2.2 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 3 | 2 | biancomi 462 | . 2 ⊢ (𝜑 ↔ (𝜒 ∧ 𝜓)) |
| 4 | 1, 3 | mpbiran 709 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.62 1020 rabtru 3656 reueq 3708 ss0b 4364 eusv1 5346 eusv2nf 5350 eusv2 5351 dfid2 5535 opthprc 5702 sosn 5725 fdmrn 6719 f1cnvcnv 6765 fores 6782 f1orn 6810 funfv 6948 dfoprab2 7447 elxp7 8003 tpostpos 8225 frrlem11 8275 canthwe 10604 opelreal 11083 elreal2 11085 eqresr 11090 elnn1uz2 12884 faclbnd4lem1 14258 isprm2 16652 joindm 18334 meetdm 18348 symgbas0 19319 toptopon 22804 ist1-3 23236 perfcls 23252 prdsxmetlem 24256 eln0s 28251 rusgrprc 29518 hhsssh2 31199 choc0 31255 chocnul 31257 shlesb1i 31315 adjeu 31818 isarchi 33136 derang0 35156 dfon3 35880 brtxpsd 35882 topmeet 36352 filnetlem2 36367 filnetlem3 36368 bj-rabtrALT 36919 bj-snsetex 36951 bj-dfid2ALT 37053 relowlpssretop 37352 poimirlem28 37642 fdc 37739 0totbnd 37767 heiborlem3 37807 cossssid 38458 cnvrefrelcoss2 38528 dfdisjALTV 38705 dfeldisj2 38710 dfeldisj3 38711 dfeldisj4 38712 disjres 38736 disjxrn 38738 dfantisymrel4 38753 dfantisymrel5 38754 antisymrelres 38755 ifpid3g 43481 elintima 43642 brpermmodel 44993 0funcALT 49077 |
| Copyright terms: Public domain | W3C validator |