MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.63 Structured version   Visualization version   GIF version

Theorem pm5.63 1017
Description: Theorem *5.63 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 25-Dec-2012.)
Assertion
Ref Expression
pm5.63 ((𝜑𝜓) ↔ (𝜑 ∨ (¬ 𝜑𝜓)))

Proof of Theorem pm5.63
StepHypRef Expression
1 exmid 892 . . 3 (𝜑 ∨ ¬ 𝜑)
2 ordi 1003 . . 3 ((𝜑 ∨ (¬ 𝜑𝜓)) ↔ ((𝜑 ∨ ¬ 𝜑) ∧ (𝜑𝜓)))
31, 2mpbiran 706 . 2 ((𝜑 ∨ (¬ 𝜑𝜓)) ↔ (𝜑𝜓))
43bicomi 223 1 ((𝜑𝜓) ↔ (𝜑 ∨ (¬ 𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845
This theorem is referenced by:  jaoi2  1057  plydivex  25457  lineunray  34449  wl-df4-3mintru2  35658
  Copyright terms: Public domain W3C validator