| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.63 | Structured version Visualization version GIF version | ||
| Description: Theorem *5.63 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
| Ref | Expression |
|---|---|
| pm5.63 | ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ (¬ 𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid 895 | . . 3 ⊢ (𝜑 ∨ ¬ 𝜑) | |
| 2 | ordi 1008 | . . 3 ⊢ ((𝜑 ∨ (¬ 𝜑 ∧ 𝜓)) ↔ ((𝜑 ∨ ¬ 𝜑) ∧ (𝜑 ∨ 𝜓))) | |
| 3 | 1, 2 | mpbiran 709 | . 2 ⊢ ((𝜑 ∨ (¬ 𝜑 ∧ 𝜓)) ↔ (𝜑 ∨ 𝜓)) |
| 4 | 3 | bicomi 224 | 1 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ (¬ 𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 |
| This theorem is referenced by: jaoi2 1060 plydivex 26339 lineunray 36148 wl-df4-3mintru2 37488 |
| Copyright terms: Public domain | W3C validator |