|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ordir | Structured version Visualization version GIF version | ||
| Description: Distributive law for disjunction. (Contributed by NM, 12-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| ordir | ⊢ (((𝜑 ∧ 𝜓) ∨ 𝜒) ↔ ((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ordi 1007 | . 2 ⊢ ((𝜒 ∨ (𝜑 ∧ 𝜓)) ↔ ((𝜒 ∨ 𝜑) ∧ (𝜒 ∨ 𝜓))) | |
| 2 | orcom 870 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ 𝜒) ↔ (𝜒 ∨ (𝜑 ∧ 𝜓))) | |
| 3 | orcom 870 | . . 3 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜒 ∨ 𝜑)) | |
| 4 | orcom 870 | . . 3 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜒 ∨ 𝜑) ∧ (𝜒 ∨ 𝜓))) | 
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (((𝜑 ∧ 𝜓) ∨ 𝜒) ↔ ((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 | 
| This theorem is referenced by: orddi 1011 pm5.62 1020 dn1 1057 cadan 1608 poxp3 8176 elnn0z 12628 eln0s 28359 ifpim123g 43518 rp-fakeanorass 43531 fvmptrabdm 47310 | 
| Copyright terms: Public domain | W3C validator |