Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordir | Structured version Visualization version GIF version |
Description: Distributive law for disjunction. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
ordir | ⊢ (((𝜑 ∧ 𝜓) ∨ 𝜒) ↔ ((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordi 1002 | . 2 ⊢ ((𝜒 ∨ (𝜑 ∧ 𝜓)) ↔ ((𝜒 ∨ 𝜑) ∧ (𝜒 ∨ 𝜓))) | |
2 | orcom 866 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ 𝜒) ↔ (𝜒 ∨ (𝜑 ∧ 𝜓))) | |
3 | orcom 866 | . . 3 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜒 ∨ 𝜑)) | |
4 | orcom 866 | . . 3 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
5 | 3, 4 | anbi12i 626 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜒 ∨ 𝜑) ∧ (𝜒 ∨ 𝜓))) |
6 | 1, 2, 5 | 3bitr4i 302 | 1 ⊢ (((𝜑 ∧ 𝜓) ∨ 𝜒) ↔ ((𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: orddi 1006 pm5.62 1015 dn1 1054 cadan 1614 elnn0z 12315 poxp3 33775 ifpim123g 41069 rp-fakeanorass 41082 fvmptrabdm 44736 |
Copyright terms: Public domain | W3C validator |