|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm5.54 | Structured version Visualization version GIF version | ||
| Description: Theorem *5.54 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 7-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| pm5.54 | ⊢ (((𝜑 ∧ 𝜓) ↔ 𝜑) ∨ ((𝜑 ∧ 𝜓) ↔ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iba 527 | . . . . 5 ⊢ (𝜓 → (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | bicomd 223 | . . . 4 ⊢ (𝜓 → ((𝜑 ∧ 𝜓) ↔ 𝜑)) | 
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ↔ 𝜑)) | 
| 4 | 3, 2 | pm5.21ni 377 | . 2 ⊢ (¬ ((𝜑 ∧ 𝜓) ↔ 𝜑) → ((𝜑 ∧ 𝜓) ↔ 𝜓)) | 
| 5 | 4 | orri 863 | 1 ⊢ (((𝜑 ∧ 𝜓) ↔ 𝜑) ∨ ((𝜑 ∧ 𝜓) ↔ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 848 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |