Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.54 | Structured version Visualization version GIF version |
Description: Theorem *5.54 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 7-Nov-2013.) |
Ref | Expression |
---|---|
pm5.54 | ⊢ (((𝜑 ∧ 𝜓) ↔ 𝜑) ∨ ((𝜑 ∧ 𝜓) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iba 528 | . . . . 5 ⊢ (𝜓 → (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | bicomd 222 | . . . 4 ⊢ (𝜓 → ((𝜑 ∧ 𝜓) ↔ 𝜑)) |
3 | 2 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ↔ 𝜑)) |
4 | 3, 2 | pm5.21ni 379 | . 2 ⊢ (¬ ((𝜑 ∧ 𝜓) ↔ 𝜑) → ((𝜑 ∧ 𝜓) ↔ 𝜓)) |
5 | 4 | orri 859 | 1 ⊢ (((𝜑 ∧ 𝜓) ↔ 𝜑) ∨ ((𝜑 ∧ 𝜓) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |