MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaao Structured version   Visualization version   GIF version

Theorem jaao 951
Description: Inference conjoining and disjoining the antecedents of two implications. (Contributed by NM, 30-Sep-1999.)
Hypotheses
Ref Expression
jaao.1 (𝜑 → (𝜓𝜒))
jaao.2 (𝜃 → (𝜏𝜒))
Assertion
Ref Expression
jaao ((𝜑𝜃) → ((𝜓𝜏) → 𝜒))

Proof of Theorem jaao
StepHypRef Expression
1 jaao.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 480 . 2 ((𝜑𝜃) → (𝜓𝜒))
3 jaao.2 . . 3 (𝜃 → (𝜏𝜒))
43adantl 481 . 2 ((𝜑𝜃) → (𝜏𝜒))
52, 4jaod 856 1 ((𝜑𝜃) → ((𝜓𝜏) → 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845
This theorem is referenced by:  pm3.44  956  pm3.48  960  prlem1  1051  elpr2g  4645  ordtri1  6388  ordun  6459  suc11  6462  funun  6585  poxp  8109  suc11reg  9611  rankunb  9842  gruun  10798  ofpreima2  32363  wl-orel12  36871  clsk1indlem3  43308
  Copyright terms: Public domain W3C validator