MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.71 Structured version   Visualization version   GIF version

Theorem pm5.71 1026
Description: Theorem *5.71 of [WhiteheadRussell] p. 125. (Contributed by Roy F. Longton, 23-Jun-2005.)
Assertion
Ref Expression
pm5.71 ((𝜓 → ¬ 𝜒) → (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑𝜒)))

Proof of Theorem pm5.71
StepHypRef Expression
1 orel2 889 . . . 4 𝜓 → ((𝜑𝜓) → 𝜑))
2 orc 865 . . . 4 (𝜑 → (𝜑𝜓))
31, 2impbid1 228 . . 3 𝜓 → ((𝜑𝜓) ↔ 𝜑))
43anbi1d 633 . 2 𝜓 → (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑𝜒)))
5 pm2.21 123 . . 3 𝜒 → (𝜒 → ((𝜑𝜓) ↔ 𝜑)))
65pm5.32rd 582 . 2 𝜒 → (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑𝜒)))
74, 6ja 189 1 ((𝜓 → ¬ 𝜒) → (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  wo 845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator