| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.71 | Structured version Visualization version GIF version | ||
| Description: Theorem *5.71 of [WhiteheadRussell] p. 125. (Contributed by Roy F. Longton, 23-Jun-2005.) |
| Ref | Expression |
|---|---|
| pm5.71 | ⊢ ((𝜓 → ¬ 𝜒) → (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orel2 890 | . . . 4 ⊢ (¬ 𝜓 → ((𝜑 ∨ 𝜓) → 𝜑)) | |
| 2 | orc 867 | . . . 4 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 3 | 1, 2 | impbid1 225 | . . 3 ⊢ (¬ 𝜓 → ((𝜑 ∨ 𝜓) ↔ 𝜑)) |
| 4 | 3 | anbi1d 631 | . 2 ⊢ (¬ 𝜓 → (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ 𝜒))) |
| 5 | pm2.21 123 | . . 3 ⊢ (¬ 𝜒 → (𝜒 → ((𝜑 ∨ 𝜓) ↔ 𝜑))) | |
| 6 | 5 | pm5.32rd 578 | . 2 ⊢ (¬ 𝜒 → (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ 𝜒))) |
| 7 | 4, 6 | ja 186 | 1 ⊢ ((𝜓 → ¬ 𝜒) → (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |