| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32rd | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.32rd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | 1 | pm5.32d 577 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| 3 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜓) ↔ (𝜓 ∧ 𝜒)) | |
| 4 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜓) ↔ (𝜓 ∧ 𝜃)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anbi1d 631 pm5.71 1029 omord 8585 oeeui 8619 omxpenlem 9092 wemapwe 9716 fin23lem26 10344 1idpr 11048 repsdf2 14801 smueqlem 16514 tcphcph 25194 2sqreultlem 27415 2sqreunnltlem 27418 n0cutlt 28306 upgr2wlk 29653 upgrspthswlk 29725 isspthonpth 29736 iswwlksnx 29827 wwlksnextwrd 29884 rusgrnumwwlkl1 29955 isclwwlknx 30022 clwwlknwwlksnb 30041 clwwlknonel 30081 eupth2lem3lem6 30219 subsdrg 33297 ordtconnlem1 33960 outsideofeu 36154 matunitlindf 37647 ftc1anclem6 37727 cvrval5 39439 cdleme0ex2N 40248 dihglb2 41366 fimgmcyc 42524 mrefg2 42697 rmydioph 43005 islssfg2 43062 fsovrfovd 44000 elfz2z 47311 |
| Copyright terms: Public domain | W3C validator |