MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.32rd Structured version   Visualization version   GIF version

Theorem pm5.32rd 577
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.)
Hypothesis
Ref Expression
pm5.32d.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
pm5.32rd (𝜑 → ((𝜒𝜓) ↔ (𝜃𝜓)))

Proof of Theorem pm5.32rd
StepHypRef Expression
1 pm5.32d.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21pm5.32d 576 . 2 (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))
3 ancom 460 . 2 ((𝜒𝜓) ↔ (𝜓𝜒))
4 ancom 460 . 2 ((𝜃𝜓) ↔ (𝜓𝜃))
52, 3, 43bitr4g 314 1 (𝜑 → ((𝜒𝜓) ↔ (𝜃𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anbi1d  630  pm5.71  1028  omord  8624  oeeui  8658  omxpenlem  9139  wemapwe  9766  fin23lem26  10394  1idpr  11098  repsdf2  14826  smueqlem  16536  tcphcph  25290  2sqreultlem  27509  2sqreunnltlem  27512  upgr2wlk  29704  upgrspthswlk  29774  isspthonpth  29785  iswwlksnx  29873  wwlksnextwrd  29930  rusgrnumwwlkl1  30001  isclwwlknx  30068  clwwlknwwlksnb  30087  clwwlknonel  30127  eupth2lem3lem6  30265  ordtconnlem1  33870  outsideofeu  36095  matunitlindf  37578  ftc1anclem6  37658  cvrval5  39372  cdleme0ex2N  40181  dihglb2  41299  fimgmcyc  42489  mrefg2  42663  rmydioph  42971  islssfg2  43028  fsovrfovd  43971  elfz2z  47230
  Copyright terms: Public domain W3C validator