![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.32rd | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.) |
Ref | Expression |
---|---|
pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.32rd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | 1 | pm5.32d 577 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
3 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜓) ↔ (𝜓 ∧ 𝜒)) | |
4 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜓) ↔ (𝜓 ∧ 𝜃)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anbi1d 631 pm5.71 1029 omord 8604 oeeui 8638 omxpenlem 9111 wemapwe 9734 fin23lem26 10362 1idpr 11066 repsdf2 14812 smueqlem 16523 tcphcph 25284 2sqreultlem 27505 2sqreunnltlem 27508 upgr2wlk 29700 upgrspthswlk 29770 isspthonpth 29781 iswwlksnx 29869 wwlksnextwrd 29926 rusgrnumwwlkl1 29997 isclwwlknx 30064 clwwlknwwlksnb 30083 clwwlknonel 30123 eupth2lem3lem6 30261 ordtconnlem1 33884 outsideofeu 36112 matunitlindf 37604 ftc1anclem6 37684 cvrval5 39397 cdleme0ex2N 40206 dihglb2 41324 fimgmcyc 42520 mrefg2 42694 rmydioph 43002 islssfg2 43059 fsovrfovd 43998 elfz2z 47264 |
Copyright terms: Public domain | W3C validator |