| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32rd | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.32rd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | 1 | pm5.32d 577 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| 3 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜓) ↔ (𝜓 ∧ 𝜒)) | |
| 4 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜓) ↔ (𝜓 ∧ 𝜃)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anbi1d 631 pm5.71 1029 omord 8478 oeeui 8512 omxpenlem 8986 wemapwe 9582 fin23lem26 10211 1idpr 10915 repsdf2 14680 smueqlem 16396 tcphcph 25159 2sqreultlem 27380 2sqreunnltlem 27383 n0cutlt 28280 upgr2wlk 29640 upgrspthswlk 29711 isspthonpth 29722 iswwlksnx 29813 wwlksnextwrd 29870 rusgrnumwwlkl1 29941 isclwwlknx 30008 clwwlknwwlksnb 30027 clwwlknonel 30067 eupth2lem3lem6 30205 subsdrg 33256 ordtconnlem1 33929 outsideofeu 36165 matunitlindf 37658 ftc1anclem6 37738 cvrval5 39454 cdleme0ex2N 40263 dihglb2 41381 fimgmcyc 42567 mrefg2 42740 rmydioph 43047 islssfg2 43104 fsovrfovd 44042 elfz2z 47346 |
| Copyright terms: Public domain | W3C validator |