MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.32rd Structured version   Visualization version   GIF version

Theorem pm5.32rd 578
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.)
Hypothesis
Ref Expression
pm5.32d.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
pm5.32rd (𝜑 → ((𝜒𝜓) ↔ (𝜃𝜓)))

Proof of Theorem pm5.32rd
StepHypRef Expression
1 pm5.32d.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21pm5.32d 577 . 2 (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))
3 ancom 460 . 2 ((𝜒𝜓) ↔ (𝜓𝜒))
4 ancom 460 . 2 ((𝜃𝜓) ↔ (𝜓𝜃))
52, 3, 43bitr4g 314 1 (𝜑 → ((𝜒𝜓) ↔ (𝜃𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anbi1d  631  pm5.71  1029  omord  8535  oeeui  8569  omxpenlem  9047  wemapwe  9657  fin23lem26  10285  1idpr  10989  repsdf2  14750  smueqlem  16467  tcphcph  25144  2sqreultlem  27365  2sqreunnltlem  27368  n0cutlt  28256  upgr2wlk  29603  upgrspthswlk  29675  isspthonpth  29686  iswwlksnx  29777  wwlksnextwrd  29834  rusgrnumwwlkl1  29905  isclwwlknx  29972  clwwlknwwlksnb  29991  clwwlknonel  30031  eupth2lem3lem6  30169  subsdrg  33255  ordtconnlem1  33921  outsideofeu  36126  matunitlindf  37619  ftc1anclem6  37699  cvrval5  39416  cdleme0ex2N  40225  dihglb2  41343  fimgmcyc  42529  mrefg2  42702  rmydioph  43010  islssfg2  43067  fsovrfovd  44005  elfz2z  47320
  Copyright terms: Public domain W3C validator