![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.32rd | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.) |
Ref | Expression |
---|---|
pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.32rd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | 1 | pm5.32d 576 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
3 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜓) ↔ (𝜓 ∧ 𝜒)) | |
4 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜓) ↔ (𝜓 ∧ 𝜃)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anbi1d 630 pm5.71 1028 omord 8624 oeeui 8658 omxpenlem 9139 wemapwe 9766 fin23lem26 10394 1idpr 11098 repsdf2 14826 smueqlem 16536 tcphcph 25290 2sqreultlem 27509 2sqreunnltlem 27512 upgr2wlk 29704 upgrspthswlk 29774 isspthonpth 29785 iswwlksnx 29873 wwlksnextwrd 29930 rusgrnumwwlkl1 30001 isclwwlknx 30068 clwwlknwwlksnb 30087 clwwlknonel 30127 eupth2lem3lem6 30265 ordtconnlem1 33870 outsideofeu 36095 matunitlindf 37578 ftc1anclem6 37658 cvrval5 39372 cdleme0ex2N 40181 dihglb2 41299 fimgmcyc 42489 mrefg2 42663 rmydioph 42971 islssfg2 43028 fsovrfovd 43971 elfz2z 47230 |
Copyright terms: Public domain | W3C validator |