![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.32rd | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.) |
Ref | Expression |
---|---|
pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.32rd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | 1 | pm5.32d 569 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
3 | ancom 453 | . 2 ⊢ ((𝜒 ∧ 𝜓) ↔ (𝜓 ∧ 𝜒)) | |
4 | ancom 453 | . 2 ⊢ ((𝜃 ∧ 𝜓) ↔ (𝜓 ∧ 𝜃)) | |
5 | 2, 3, 4 | 3bitr4g 306 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 |
This theorem is referenced by: anbi1d 620 pm5.71 1010 omord 7997 oeeui 8031 omxpenlem 8416 wemapwe 8956 fin23lem26 9547 1idpr 10251 repsdf2 14000 smueqlem 15702 tcphcph 23546 2sqreultlem 25728 2sqreunnltlem 25731 upgr2wlk 27155 upgrspthswlk 27230 isspthonpth 27241 iswwlksnx 27329 wwlksnextwrd 27391 wwlksnextwrdOLD 27396 rusgrnumwwlkl1 27477 isclwwlknx 27554 clwwlknwwlksnb 27581 clwwlknonel 27626 eupth2lem3lem6 27766 ordtconnlem1 30811 outsideofeu 33113 matunitlindf 34331 ftc1anclem6 34413 cvrval5 35996 cdleme0ex2N 36805 dihglb2 37923 mrefg2 38699 rmydioph 39007 islssfg2 39067 fsovrfovd 39718 elfz2z 42922 |
Copyright terms: Public domain | W3C validator |