Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.32rd | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.) |
Ref | Expression |
---|---|
pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.32rd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | 1 | pm5.32d 577 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
3 | ancom 461 | . 2 ⊢ ((𝜒 ∧ 𝜓) ↔ (𝜓 ∧ 𝜒)) | |
4 | ancom 461 | . 2 ⊢ ((𝜃 ∧ 𝜓) ↔ (𝜓 ∧ 𝜃)) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anbi1d 630 pm5.71 1025 omord 8470 oeeui 8504 omxpenlem 8938 wemapwe 9554 fin23lem26 10182 1idpr 10886 repsdf2 14589 smueqlem 16296 tcphcph 24507 2sqreultlem 26701 2sqreunnltlem 26704 upgr2wlk 28324 upgrspthswlk 28394 isspthonpth 28405 iswwlksnx 28493 wwlksnextwrd 28550 rusgrnumwwlkl1 28621 isclwwlknx 28688 clwwlknwwlksnb 28707 clwwlknonel 28747 eupth2lem3lem6 28885 ordtconnlem1 32172 outsideofeu 34529 matunitlindf 35888 ftc1anclem6 35968 cvrval5 37691 cdleme0ex2N 38500 dihglb2 39618 mrefg2 40799 rmydioph 41107 islssfg2 41167 fsovrfovd 41946 elfz2z 45166 |
Copyright terms: Public domain | W3C validator |