MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.32rd Structured version   Visualization version   GIF version

Theorem pm5.32rd 570
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.)
Hypothesis
Ref Expression
pm5.32d.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
pm5.32rd (𝜑 → ((𝜒𝜓) ↔ (𝜃𝜓)))

Proof of Theorem pm5.32rd
StepHypRef Expression
1 pm5.32d.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21pm5.32d 569 . 2 (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))
3 ancom 453 . 2 ((𝜒𝜓) ↔ (𝜓𝜒))
4 ancom 453 . 2 ((𝜃𝜓) ↔ (𝜓𝜃))
52, 3, 43bitr4g 306 1 (𝜑 → ((𝜒𝜓) ↔ (𝜃𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 388
This theorem is referenced by:  anbi1d  620  pm5.71  1010  omord  7997  oeeui  8031  omxpenlem  8416  wemapwe  8956  fin23lem26  9547  1idpr  10251  repsdf2  14000  smueqlem  15702  tcphcph  23546  2sqreultlem  25728  2sqreunnltlem  25731  upgr2wlk  27155  upgrspthswlk  27230  isspthonpth  27241  iswwlksnx  27329  wwlksnextwrd  27391  wwlksnextwrdOLD  27396  rusgrnumwwlkl1  27477  isclwwlknx  27554  clwwlknwwlksnb  27581  clwwlknonel  27626  eupth2lem3lem6  27766  ordtconnlem1  30811  outsideofeu  33113  matunitlindf  34331  ftc1anclem6  34413  cvrval5  35996  cdleme0ex2N  36805  dihglb2  37923  mrefg2  38699  rmydioph  39007  islssfg2  39067  fsovrfovd  39718  elfz2z  42922
  Copyright terms: Public domain W3C validator