| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32rd | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.32rd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | 1 | pm5.32d 577 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| 3 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜓) ↔ (𝜓 ∧ 𝜒)) | |
| 4 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜓) ↔ (𝜓 ∧ 𝜃)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anbi1d 631 pm5.71 1029 omord 8535 oeeui 8569 omxpenlem 9047 wemapwe 9657 fin23lem26 10285 1idpr 10989 repsdf2 14750 smueqlem 16467 tcphcph 25144 2sqreultlem 27365 2sqreunnltlem 27368 n0cutlt 28256 upgr2wlk 29603 upgrspthswlk 29675 isspthonpth 29686 iswwlksnx 29777 wwlksnextwrd 29834 rusgrnumwwlkl1 29905 isclwwlknx 29972 clwwlknwwlksnb 29991 clwwlknonel 30031 eupth2lem3lem6 30169 subsdrg 33255 ordtconnlem1 33921 outsideofeu 36126 matunitlindf 37619 ftc1anclem6 37699 cvrval5 39416 cdleme0ex2N 40225 dihglb2 41343 fimgmcyc 42529 mrefg2 42702 rmydioph 43010 islssfg2 43067 fsovrfovd 44005 elfz2z 47320 |
| Copyright terms: Public domain | W3C validator |