| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32rd | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.32rd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | 1 | pm5.32d 577 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| 3 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜓) ↔ (𝜓 ∧ 𝜒)) | |
| 4 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜓) ↔ (𝜓 ∧ 𝜃)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anbi1d 631 pm5.71 1029 omord 8492 oeeui 8526 omxpenlem 9002 wemapwe 9598 fin23lem26 10227 1idpr 10931 repsdf2 14692 smueqlem 16408 tcphcph 25184 2sqreultlem 27405 2sqreunnltlem 27408 n0cutlt 28305 upgr2wlk 29666 upgrspthswlk 29737 isspthonpth 29748 iswwlksnx 29839 wwlksnextwrd 29896 rusgrnumwwlkl1 29970 isclwwlknx 30037 clwwlknwwlksnb 30056 clwwlknonel 30096 eupth2lem3lem6 30234 subsdrg 33308 ordtconnlem1 34009 outsideofeu 36247 matunitlindf 37731 ftc1anclem6 37811 cvrval5 39587 cdleme0ex2N 40396 dihglb2 41514 fimgmcyc 42704 mrefg2 42864 rmydioph 43171 islssfg2 43228 fsovrfovd 44166 elfz2z 47477 |
| Copyright terms: Public domain | W3C validator |