MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.32rd Structured version   Visualization version   GIF version

Theorem pm5.32rd 578
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.)
Hypothesis
Ref Expression
pm5.32d.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
pm5.32rd (𝜑 → ((𝜒𝜓) ↔ (𝜃𝜓)))

Proof of Theorem pm5.32rd
StepHypRef Expression
1 pm5.32d.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21pm5.32d 577 . 2 (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))
3 ancom 460 . 2 ((𝜒𝜓) ↔ (𝜓𝜒))
4 ancom 460 . 2 ((𝜃𝜓) ↔ (𝜓𝜃))
52, 3, 43bitr4g 314 1 (𝜑 → ((𝜒𝜓) ↔ (𝜃𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anbi1d  631  pm5.71  1030  omord  8606  oeeui  8640  omxpenlem  9113  wemapwe  9737  fin23lem26  10365  1idpr  11069  repsdf2  14816  smueqlem  16527  tcphcph  25271  2sqreultlem  27491  2sqreunnltlem  27494  upgr2wlk  29686  upgrspthswlk  29758  isspthonpth  29769  iswwlksnx  29860  wwlksnextwrd  29917  rusgrnumwwlkl1  29988  isclwwlknx  30055  clwwlknwwlksnb  30074  clwwlknonel  30114  eupth2lem3lem6  30252  ordtconnlem1  33923  outsideofeu  36132  matunitlindf  37625  ftc1anclem6  37705  cvrval5  39417  cdleme0ex2N  40226  dihglb2  41344  fimgmcyc  42544  mrefg2  42718  rmydioph  43026  islssfg2  43083  fsovrfovd  44022  elfz2z  47327
  Copyright terms: Public domain W3C validator