Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.32rd | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.) |
Ref | Expression |
---|---|
pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.32rd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | 1 | pm5.32d 576 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
3 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜓) ↔ (𝜓 ∧ 𝜒)) | |
4 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜓) ↔ (𝜓 ∧ 𝜃)) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: anbi1d 629 pm5.71 1024 omord 8361 oeeui 8395 omxpenlem 8813 wemapwe 9385 fin23lem26 10012 1idpr 10716 repsdf2 14419 smueqlem 16125 tcphcph 24306 2sqreultlem 26500 2sqreunnltlem 26503 upgr2wlk 27938 upgrspthswlk 28007 isspthonpth 28018 iswwlksnx 28106 wwlksnextwrd 28163 rusgrnumwwlkl1 28234 isclwwlknx 28301 clwwlknwwlksnb 28320 clwwlknonel 28360 eupth2lem3lem6 28498 ordtconnlem1 31776 outsideofeu 34360 matunitlindf 35702 ftc1anclem6 35782 cvrval5 37356 cdleme0ex2N 38165 dihglb2 39283 mrefg2 40445 rmydioph 40752 islssfg2 40812 fsovrfovd 41506 elfz2z 44695 |
Copyright terms: Public domain | W3C validator |