![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.32rd | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.) |
Ref | Expression |
---|---|
pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.32rd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | 1 | pm5.32d 577 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
3 | ancom 461 | . 2 ⊢ ((𝜒 ∧ 𝜓) ↔ (𝜓 ∧ 𝜒)) | |
4 | ancom 461 | . 2 ⊢ ((𝜃 ∧ 𝜓) ↔ (𝜓 ∧ 𝜃)) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anbi1d 630 pm5.71 1026 omord 8567 oeeui 8601 omxpenlem 9072 wemapwe 9691 fin23lem26 10319 1idpr 11023 repsdf2 14727 smueqlem 16430 tcphcph 24753 2sqreultlem 26947 2sqreunnltlem 26950 upgr2wlk 28922 upgrspthswlk 28992 isspthonpth 29003 iswwlksnx 29091 wwlksnextwrd 29148 rusgrnumwwlkl1 29219 isclwwlknx 29286 clwwlknwwlksnb 29305 clwwlknonel 29345 eupth2lem3lem6 29483 ordtconnlem1 32899 outsideofeu 35098 matunitlindf 36481 ftc1anclem6 36561 cvrval5 38281 cdleme0ex2N 39090 dihglb2 40208 mrefg2 41435 rmydioph 41743 islssfg2 41803 fsovrfovd 42750 elfz2z 46013 |
Copyright terms: Public domain | W3C validator |