| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32rd | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.32rd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | 1 | pm5.32d 577 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| 3 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜓) ↔ (𝜓 ∧ 𝜒)) | |
| 4 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜓) ↔ (𝜓 ∧ 𝜃)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anbi1d 631 pm5.71 1029 omord 8532 oeeui 8566 omxpenlem 9042 wemapwe 9650 fin23lem26 10278 1idpr 10982 repsdf2 14743 smueqlem 16460 tcphcph 25137 2sqreultlem 27358 2sqreunnltlem 27361 n0cutlt 28249 upgr2wlk 29596 upgrspthswlk 29668 isspthonpth 29679 iswwlksnx 29770 wwlksnextwrd 29827 rusgrnumwwlkl1 29898 isclwwlknx 29965 clwwlknwwlksnb 29984 clwwlknonel 30024 eupth2lem3lem6 30162 subsdrg 33248 ordtconnlem1 33914 outsideofeu 36119 matunitlindf 37612 ftc1anclem6 37692 cvrval5 39409 cdleme0ex2N 40218 dihglb2 41336 fimgmcyc 42522 mrefg2 42695 rmydioph 43003 islssfg2 43060 fsovrfovd 43998 elfz2z 47316 |
| Copyright terms: Public domain | W3C validator |