| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32rd | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.32rd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | 1 | pm5.32d 577 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| 3 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜓) ↔ (𝜓 ∧ 𝜒)) | |
| 4 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜓) ↔ (𝜓 ∧ 𝜃)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anbi1d 631 pm5.71 1029 omord 8493 oeeui 8527 omxpenlem 9002 wemapwe 9612 fin23lem26 10238 1idpr 10942 repsdf2 14702 smueqlem 16419 tcphcph 25153 2sqreultlem 27374 2sqreunnltlem 27377 n0cutlt 28272 upgr2wlk 29630 upgrspthswlk 29701 isspthonpth 29712 iswwlksnx 29803 wwlksnextwrd 29860 rusgrnumwwlkl1 29931 isclwwlknx 29998 clwwlknwwlksnb 30017 clwwlknonel 30057 eupth2lem3lem6 30195 subsdrg 33250 ordtconnlem1 33893 outsideofeu 36107 matunitlindf 37600 ftc1anclem6 37680 cvrval5 39397 cdleme0ex2N 40206 dihglb2 41324 fimgmcyc 42510 mrefg2 42683 rmydioph 42990 islssfg2 43047 fsovrfovd 43985 elfz2z 47303 |
| Copyright terms: Public domain | W3C validator |