MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.32rd Structured version   Visualization version   GIF version

Theorem pm5.32rd 578
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.)
Hypothesis
Ref Expression
pm5.32d.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
pm5.32rd (𝜑 → ((𝜒𝜓) ↔ (𝜃𝜓)))

Proof of Theorem pm5.32rd
StepHypRef Expression
1 pm5.32d.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21pm5.32d 577 . 2 (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))
3 ancom 460 . 2 ((𝜒𝜓) ↔ (𝜓𝜒))
4 ancom 460 . 2 ((𝜃𝜓) ↔ (𝜓𝜃))
52, 3, 43bitr4g 314 1 (𝜑 → ((𝜒𝜓) ↔ (𝜃𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anbi1d  631  pm5.71  1029  omord  8585  oeeui  8619  omxpenlem  9092  wemapwe  9716  fin23lem26  10344  1idpr  11048  repsdf2  14801  smueqlem  16514  tcphcph  25194  2sqreultlem  27415  2sqreunnltlem  27418  n0cutlt  28306  upgr2wlk  29653  upgrspthswlk  29725  isspthonpth  29736  iswwlksnx  29827  wwlksnextwrd  29884  rusgrnumwwlkl1  29955  isclwwlknx  30022  clwwlknwwlksnb  30041  clwwlknonel  30081  eupth2lem3lem6  30219  subsdrg  33297  ordtconnlem1  33960  outsideofeu  36154  matunitlindf  37647  ftc1anclem6  37727  cvrval5  39439  cdleme0ex2N  40248  dihglb2  41366  fimgmcyc  42524  mrefg2  42697  rmydioph  43005  islssfg2  43062  fsovrfovd  44000  elfz2z  47311
  Copyright terms: Public domain W3C validator