| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32rd | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.32rd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | 1 | pm5.32d 577 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| 3 | ancom 460 | . 2 ⊢ ((𝜒 ∧ 𝜓) ↔ (𝜓 ∧ 𝜒)) | |
| 4 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜓) ↔ (𝜓 ∧ 𝜃)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anbi1d 631 pm5.71 1030 omord 8606 oeeui 8640 omxpenlem 9113 wemapwe 9737 fin23lem26 10365 1idpr 11069 repsdf2 14816 smueqlem 16527 tcphcph 25271 2sqreultlem 27491 2sqreunnltlem 27494 upgr2wlk 29686 upgrspthswlk 29758 isspthonpth 29769 iswwlksnx 29860 wwlksnextwrd 29917 rusgrnumwwlkl1 29988 isclwwlknx 30055 clwwlknwwlksnb 30074 clwwlknonel 30114 eupth2lem3lem6 30252 ordtconnlem1 33923 outsideofeu 36132 matunitlindf 37625 ftc1anclem6 37705 cvrval5 39417 cdleme0ex2N 40226 dihglb2 41344 fimgmcyc 42544 mrefg2 42718 rmydioph 43026 islssfg2 43083 fsovrfovd 44022 elfz2z 47327 |
| Copyright terms: Public domain | W3C validator |