![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.32rd | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.) |
Ref | Expression |
---|---|
pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.32rd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | 1 | pm5.32d 575 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
3 | ancom 459 | . 2 ⊢ ((𝜒 ∧ 𝜓) ↔ (𝜓 ∧ 𝜒)) | |
4 | ancom 459 | . 2 ⊢ ((𝜃 ∧ 𝜓) ↔ (𝜓 ∧ 𝜃)) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: anbi1d 628 pm5.71 1024 omord 8570 oeeui 8604 omxpenlem 9075 wemapwe 9694 fin23lem26 10322 1idpr 11026 repsdf2 14732 smueqlem 16435 tcphcph 24985 2sqreultlem 27186 2sqreunnltlem 27189 upgr2wlk 29192 upgrspthswlk 29262 isspthonpth 29273 iswwlksnx 29361 wwlksnextwrd 29418 rusgrnumwwlkl1 29489 isclwwlknx 29556 clwwlknwwlksnb 29575 clwwlknonel 29615 eupth2lem3lem6 29753 ordtconnlem1 33202 outsideofeu 35407 matunitlindf 36789 ftc1anclem6 36869 cvrval5 38589 cdleme0ex2N 39398 dihglb2 40516 mrefg2 41747 rmydioph 42055 islssfg2 42115 fsovrfovd 43062 elfz2z 46321 |
Copyright terms: Public domain | W3C validator |