Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.32rd | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 25-Dec-2004.) |
Ref | Expression |
---|---|
pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.32rd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | 1 | pm5.32d 577 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
3 | ancom 461 | . 2 ⊢ ((𝜒 ∧ 𝜓) ↔ (𝜓 ∧ 𝜒)) | |
4 | ancom 461 | . 2 ⊢ ((𝜃 ∧ 𝜓) ↔ (𝜓 ∧ 𝜃)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anbi1d 630 pm5.71 1025 omord 8399 oeeui 8433 omxpenlem 8860 wemapwe 9455 fin23lem26 10081 1idpr 10785 repsdf2 14491 smueqlem 16197 tcphcph 24401 2sqreultlem 26595 2sqreunnltlem 26598 upgr2wlk 28036 upgrspthswlk 28106 isspthonpth 28117 iswwlksnx 28205 wwlksnextwrd 28262 rusgrnumwwlkl1 28333 isclwwlknx 28400 clwwlknwwlksnb 28419 clwwlknonel 28459 eupth2lem3lem6 28597 ordtconnlem1 31874 outsideofeu 34433 matunitlindf 35775 ftc1anclem6 35855 cvrval5 37429 cdleme0ex2N 38238 dihglb2 39356 mrefg2 40529 rmydioph 40836 islssfg2 40896 fsovrfovd 41617 elfz2z 44807 |
Copyright terms: Public domain | W3C validator |