Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bigolden | Structured version Visualization version GIF version |
Description: Dijkstra-Scholten's Golden Rule for calculational proofs. (Contributed by NM, 10-Jan-2005.) |
Ref | Expression |
---|---|
bigolden | ⊢ (((𝜑 ∧ 𝜓) ↔ 𝜑) ↔ (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71 557 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
2 | pm4.72 946 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜓 ↔ (𝜑 ∨ 𝜓))) | |
3 | bicom 221 | . 2 ⊢ ((𝜑 ↔ (𝜑 ∧ 𝜓)) ↔ ((𝜑 ∧ 𝜓) ↔ 𝜑)) | |
4 | 1, 2, 3 | 3bitr3ri 301 | 1 ⊢ (((𝜑 ∧ 𝜓) ↔ 𝜑) ↔ (𝜓 ↔ (𝜑 ∨ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |