|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > bigolden | Structured version Visualization version GIF version | ||
| Description: Dijkstra-Scholten's Golden Rule for calculational proofs. (Contributed by NM, 10-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| bigolden | ⊢ (((𝜑 ∧ 𝜓) ↔ 𝜑) ↔ (𝜓 ↔ (𝜑 ∨ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm4.71 557 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | pm4.72 952 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜓 ↔ (𝜑 ∨ 𝜓))) | |
| 3 | bicom 222 | . 2 ⊢ ((𝜑 ↔ (𝜑 ∧ 𝜓)) ↔ ((𝜑 ∧ 𝜓) ↔ 𝜑)) | |
| 4 | 1, 2, 3 | 3bitr3ri 302 | 1 ⊢ (((𝜑 ∧ 𝜓) ↔ 𝜑) ↔ (𝜓 ↔ (𝜑 ∨ 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |