| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prlem1 | Structured version Visualization version GIF version | ||
| Description: A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
| Ref | Expression |
|---|---|
| prlem1.1 | ⊢ (𝜑 → (𝜂 ↔ 𝜒)) |
| prlem1.2 | ⊢ (𝜓 → ¬ 𝜃) |
| Ref | Expression |
|---|---|
| prlem1 | ⊢ (𝜑 → (𝜓 → (((𝜓 ∧ 𝜒) ∨ (𝜃 ∧ 𝜏)) → 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prlem1.1 | . . . . 5 ⊢ (𝜑 → (𝜂 ↔ 𝜒)) | |
| 2 | 1 | biimprd 248 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜂)) |
| 3 | 2 | adantld 490 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜂)) |
| 4 | prlem1.2 | . . . . 5 ⊢ (𝜓 → ¬ 𝜃) | |
| 5 | 4 | pm2.21d 121 | . . . 4 ⊢ (𝜓 → (𝜃 → 𝜂)) |
| 6 | 5 | adantrd 491 | . . 3 ⊢ (𝜓 → ((𝜃 ∧ 𝜏) → 𝜂)) |
| 7 | 3, 6 | jaao 957 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (((𝜓 ∧ 𝜒) ∨ (𝜃 ∧ 𝜏)) → 𝜂)) |
| 8 | 7 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (((𝜓 ∧ 𝜒) ∨ (𝜃 ∧ 𝜏)) → 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 |
| This theorem is referenced by: zfpair 5421 |
| Copyright terms: Public domain | W3C validator |