MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prlem1 Structured version   Visualization version   GIF version

Theorem prlem1 1051
Description: A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 5-Jan-2013.)
Hypotheses
Ref Expression
prlem1.1 (𝜑 → (𝜂𝜒))
prlem1.2 (𝜓 → ¬ 𝜃)
Assertion
Ref Expression
prlem1 (𝜑 → (𝜓 → (((𝜓𝜒) ∨ (𝜃𝜏)) → 𝜂)))

Proof of Theorem prlem1
StepHypRef Expression
1 prlem1.1 . . . . 5 (𝜑 → (𝜂𝜒))
21biimprd 247 . . . 4 (𝜑 → (𝜒𝜂))
32adantld 490 . . 3 (𝜑 → ((𝜓𝜒) → 𝜂))
4 prlem1.2 . . . . 5 (𝜓 → ¬ 𝜃)
54pm2.21d 121 . . . 4 (𝜓 → (𝜃𝜂))
65adantrd 491 . . 3 (𝜓 → ((𝜃𝜏) → 𝜂))
73, 6jaao 951 . 2 ((𝜑𝜓) → (((𝜓𝜒) ∨ (𝜃𝜏)) → 𝜂))
87ex 412 1 (𝜑 → (𝜓 → (((𝜓𝜒) ∨ (𝜃𝜏)) → 𝜂)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by:  zfpair  5347
  Copyright terms: Public domain W3C validator