Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prlem1 | Structured version Visualization version GIF version |
Description: A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
Ref | Expression |
---|---|
prlem1.1 | ⊢ (𝜑 → (𝜂 ↔ 𝜒)) |
prlem1.2 | ⊢ (𝜓 → ¬ 𝜃) |
Ref | Expression |
---|---|
prlem1 | ⊢ (𝜑 → (𝜓 → (((𝜓 ∧ 𝜒) ∨ (𝜃 ∧ 𝜏)) → 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prlem1.1 | . . . . 5 ⊢ (𝜑 → (𝜂 ↔ 𝜒)) | |
2 | 1 | biimprd 251 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜂)) |
3 | 2 | adantld 494 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜂)) |
4 | prlem1.2 | . . . . 5 ⊢ (𝜓 → ¬ 𝜃) | |
5 | 4 | pm2.21d 121 | . . . 4 ⊢ (𝜓 → (𝜃 → 𝜂)) |
6 | 5 | adantrd 495 | . . 3 ⊢ (𝜓 → ((𝜃 ∧ 𝜏) → 𝜂)) |
7 | 3, 6 | jaao 952 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (((𝜓 ∧ 𝜒) ∨ (𝜃 ∧ 𝜏)) → 𝜂)) |
8 | 7 | ex 416 | 1 ⊢ (𝜑 → (𝜓 → (((𝜓 ∧ 𝜒) ∨ (𝜃 ∧ 𝜏)) → 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 |
This theorem is referenced by: zfpair 5290 |
Copyright terms: Public domain | W3C validator |