| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantld | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| adantld | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
| 2 | adantld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl5 34 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜒)) |
| Copyright terms: Public domain | W3C validator |