MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfpair Structured version   Visualization version   GIF version

Theorem zfpair 5396
Description: The Axiom of Pairing of Zermelo-Fraenkel set theory. Axiom 2 of [TakeutiZaring] p. 15. In some textbooks this is stated as a separate axiom; here we show it is redundant since it can be derived from the other axioms.

This theorem should not be referenced by any proof other than axprALT 5397. Instead, use zfpair2 5408 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.)

Assertion
Ref Expression
zfpair {𝑥, 𝑦} ∈ V

Proof of Theorem zfpair
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfpr2 4627 . 2 {𝑥, 𝑦} = {𝑤 ∣ (𝑤 = 𝑥𝑤 = 𝑦)}
2 19.43 1882 . . . . 5 (∃𝑧((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ (∃𝑧(𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ ∃𝑧(𝑧 = {∅} ∧ 𝑤 = 𝑦)))
3 prlem2 1055 . . . . . 6 (((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ ((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦))))
43exbii 1848 . . . . 5 (∃𝑧((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ ∃𝑧((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦))))
5 0ex 5282 . . . . . . . 8 ∅ ∈ V
65isseti 3482 . . . . . . 7 𝑧 𝑧 = ∅
7 19.41v 1949 . . . . . . 7 (∃𝑧(𝑧 = ∅ ∧ 𝑤 = 𝑥) ↔ (∃𝑧 𝑧 = ∅ ∧ 𝑤 = 𝑥))
86, 7mpbiran 709 . . . . . 6 (∃𝑧(𝑧 = ∅ ∧ 𝑤 = 𝑥) ↔ 𝑤 = 𝑥)
9 p0ex 5359 . . . . . . . 8 {∅} ∈ V
109isseti 3482 . . . . . . 7 𝑧 𝑧 = {∅}
11 19.41v 1949 . . . . . . 7 (∃𝑧(𝑧 = {∅} ∧ 𝑤 = 𝑦) ↔ (∃𝑧 𝑧 = {∅} ∧ 𝑤 = 𝑦))
1210, 11mpbiran 709 . . . . . 6 (∃𝑧(𝑧 = {∅} ∧ 𝑤 = 𝑦) ↔ 𝑤 = 𝑦)
138, 12orbi12i 914 . . . . 5 ((∃𝑧(𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ ∃𝑧(𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ (𝑤 = 𝑥𝑤 = 𝑦))
142, 4, 133bitr3ri 302 . . . 4 ((𝑤 = 𝑥𝑤 = 𝑦) ↔ ∃𝑧((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦))))
1514abbii 2803 . . 3 {𝑤 ∣ (𝑤 = 𝑥𝑤 = 𝑦)} = {𝑤 ∣ ∃𝑧((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)))}
16 dfpr2 4627 . . . . 5 {∅, {∅}} = {𝑧 ∣ (𝑧 = ∅ ∨ 𝑧 = {∅})}
17 pp0ex 5361 . . . . 5 {∅, {∅}} ∈ V
1816, 17eqeltrri 2832 . . . 4 {𝑧 ∣ (𝑧 = ∅ ∨ 𝑧 = {∅})} ∈ V
19 equequ2 2026 . . . . . . . 8 (𝑣 = 𝑥 → (𝑤 = 𝑣𝑤 = 𝑥))
20 0inp0 5334 . . . . . . . 8 (𝑧 = ∅ → ¬ 𝑧 = {∅})
2119, 20prlem1 1054 . . . . . . 7 (𝑣 = 𝑥 → (𝑧 = ∅ → (((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣)))
2221alrimdv 1929 . . . . . 6 (𝑣 = 𝑥 → (𝑧 = ∅ → ∀𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣)))
2322spimevw 1985 . . . . 5 (𝑧 = ∅ → ∃𝑣𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣))
24 orcom 870 . . . . . . . 8 (((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ ((𝑧 = {∅} ∧ 𝑤 = 𝑦) ∨ (𝑧 = ∅ ∧ 𝑤 = 𝑥)))
25 equequ2 2026 . . . . . . . . 9 (𝑣 = 𝑦 → (𝑤 = 𝑣𝑤 = 𝑦))
2620con2i 139 . . . . . . . . 9 (𝑧 = {∅} → ¬ 𝑧 = ∅)
2725, 26prlem1 1054 . . . . . . . 8 (𝑣 = 𝑦 → (𝑧 = {∅} → (((𝑧 = {∅} ∧ 𝑤 = 𝑦) ∨ (𝑧 = ∅ ∧ 𝑤 = 𝑥)) → 𝑤 = 𝑣)))
2824, 27syl7bi 255 . . . . . . 7 (𝑣 = 𝑦 → (𝑧 = {∅} → (((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣)))
2928alrimdv 1929 . . . . . 6 (𝑣 = 𝑦 → (𝑧 = {∅} → ∀𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣)))
3029spimevw 1985 . . . . 5 (𝑧 = {∅} → ∃𝑣𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣))
3123, 30jaoi 857 . . . 4 ((𝑧 = ∅ ∨ 𝑧 = {∅}) → ∃𝑣𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣))
3218, 31zfrep4 5268 . . 3 {𝑤 ∣ ∃𝑧((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)))} ∈ V
3315, 32eqeltri 2831 . 2 {𝑤 ∣ (𝑤 = 𝑥𝑤 = 𝑦)} ∈ V
341, 33eqeltri 2831 1 {𝑥, 𝑦} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2714  Vcvv 3464  c0 4313  {csn 4606  {cpr 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-pw 4582  df-sn 4607  df-pr 4609
This theorem is referenced by:  axprALT  5397
  Copyright terms: Public domain W3C validator