MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfpair Structured version   Visualization version   GIF version

Theorem zfpair 5182
Description: The Axiom of Pairing of Zermelo-Fraenkel set theory. Axiom 2 of [TakeutiZaring] p. 15. In some textbooks this is stated as a separate axiom; here we show it is redundant since it can be derived from the other axioms.

This theorem should not be referenced by any proof other than axprALT 5183. Instead, use zfpair2 5191 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.)

Assertion
Ref Expression
zfpair {𝑥, 𝑦} ∈ V

Proof of Theorem zfpair
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfpr2 4463 . 2 {𝑥, 𝑦} = {𝑤 ∣ (𝑤 = 𝑥𝑤 = 𝑦)}
2 19.43 1846 . . . . 5 (∃𝑧((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ (∃𝑧(𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ ∃𝑧(𝑧 = {∅} ∧ 𝑤 = 𝑦)))
3 prlem2 1037 . . . . . 6 (((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ ((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦))))
43exbii 1811 . . . . 5 (∃𝑧((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ ∃𝑧((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦))))
5 0ex 5072 . . . . . . . 8 ∅ ∈ V
65isseti 3431 . . . . . . 7 𝑧 𝑧 = ∅
7 19.41v 1909 . . . . . . 7 (∃𝑧(𝑧 = ∅ ∧ 𝑤 = 𝑥) ↔ (∃𝑧 𝑧 = ∅ ∧ 𝑤 = 𝑥))
86, 7mpbiran 697 . . . . . 6 (∃𝑧(𝑧 = ∅ ∧ 𝑤 = 𝑥) ↔ 𝑤 = 𝑥)
9 p0ex 5141 . . . . . . . 8 {∅} ∈ V
109isseti 3431 . . . . . . 7 𝑧 𝑧 = {∅}
11 19.41v 1909 . . . . . . 7 (∃𝑧(𝑧 = {∅} ∧ 𝑤 = 𝑦) ↔ (∃𝑧 𝑧 = {∅} ∧ 𝑤 = 𝑦))
1210, 11mpbiran 697 . . . . . 6 (∃𝑧(𝑧 = {∅} ∧ 𝑤 = 𝑦) ↔ 𝑤 = 𝑦)
138, 12orbi12i 899 . . . . 5 ((∃𝑧(𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ ∃𝑧(𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ (𝑤 = 𝑥𝑤 = 𝑦))
142, 4, 133bitr3ri 294 . . . 4 ((𝑤 = 𝑥𝑤 = 𝑦) ↔ ∃𝑧((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦))))
1514abbii 2846 . . 3 {𝑤 ∣ (𝑤 = 𝑥𝑤 = 𝑦)} = {𝑤 ∣ ∃𝑧((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)))}
16 dfpr2 4463 . . . . 5 {∅, {∅}} = {𝑧 ∣ (𝑧 = ∅ ∨ 𝑧 = {∅})}
17 pp0ex 5143 . . . . 5 {∅, {∅}} ∈ V
1816, 17eqeltrri 2865 . . . 4 {𝑧 ∣ (𝑧 = ∅ ∨ 𝑧 = {∅})} ∈ V
19 equequ2 1984 . . . . . . . 8 (𝑣 = 𝑥 → (𝑤 = 𝑣𝑤 = 𝑥))
20 0inp0 5117 . . . . . . . 8 (𝑧 = ∅ → ¬ 𝑧 = {∅})
2119, 20prlem1 1036 . . . . . . 7 (𝑣 = 𝑥 → (𝑧 = ∅ → (((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣)))
2221alrimdv 1889 . . . . . 6 (𝑣 = 𝑥 → (𝑧 = ∅ → ∀𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣)))
2322spimev 2324 . . . . 5 (𝑧 = ∅ → ∃𝑣𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣))
24 orcom 857 . . . . . . . 8 (((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ ((𝑧 = {∅} ∧ 𝑤 = 𝑦) ∨ (𝑧 = ∅ ∧ 𝑤 = 𝑥)))
25 equequ2 1984 . . . . . . . . 9 (𝑣 = 𝑦 → (𝑤 = 𝑣𝑤 = 𝑦))
2620con2i 137 . . . . . . . . 9 (𝑧 = {∅} → ¬ 𝑧 = ∅)
2725, 26prlem1 1036 . . . . . . . 8 (𝑣 = 𝑦 → (𝑧 = {∅} → (((𝑧 = {∅} ∧ 𝑤 = 𝑦) ∨ (𝑧 = ∅ ∧ 𝑤 = 𝑥)) → 𝑤 = 𝑣)))
2824, 27syl7bi 247 . . . . . . 7 (𝑣 = 𝑦 → (𝑧 = {∅} → (((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣)))
2928alrimdv 1889 . . . . . 6 (𝑣 = 𝑦 → (𝑧 = {∅} → ∀𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣)))
3029spimev 2324 . . . . 5 (𝑧 = {∅} → ∃𝑣𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣))
3123, 30jaoi 844 . . . 4 ((𝑧 = ∅ ∨ 𝑧 = {∅}) → ∃𝑣𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣))
3218, 31zfrep4 5062 . . 3 {𝑤 ∣ ∃𝑧((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)))} ∈ V
3315, 32eqeltri 2864 . 2 {𝑤 ∣ (𝑤 = 𝑥𝑤 = 𝑦)} ∈ V
341, 33eqeltri 2864 1 {𝑥, 𝑦} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wo 834  wal 1506   = wceq 1508  wex 1743  wcel 2051  {cab 2760  Vcvv 3417  c0 4181  {csn 4444  {cpr 4446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-v 3419  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4182  df-pw 4427  df-sn 4445  df-pr 4447
This theorem is referenced by:  axprALT  5183
  Copyright terms: Public domain W3C validator