Step | Hyp | Ref
| Expression |
1 | | dfpr2 4580 |
. 2
⊢ {𝑥, 𝑦} = {𝑤 ∣ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)} |
2 | | 19.43 1885 |
. . . . 5
⊢
(∃𝑧((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ (∃𝑧(𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ ∃𝑧(𝑧 = {∅} ∧ 𝑤 = 𝑦))) |
3 | | prlem2 1053 |
. . . . . 6
⊢ (((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ ((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)))) |
4 | 3 | exbii 1850 |
. . . . 5
⊢
(∃𝑧((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ ∃𝑧((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)))) |
5 | | 0ex 5231 |
. . . . . . . 8
⊢ ∅
∈ V |
6 | 5 | isseti 3447 |
. . . . . . 7
⊢
∃𝑧 𝑧 = ∅ |
7 | | 19.41v 1953 |
. . . . . . 7
⊢
(∃𝑧(𝑧 = ∅ ∧ 𝑤 = 𝑥) ↔ (∃𝑧 𝑧 = ∅ ∧ 𝑤 = 𝑥)) |
8 | 6, 7 | mpbiran 706 |
. . . . . 6
⊢
(∃𝑧(𝑧 = ∅ ∧ 𝑤 = 𝑥) ↔ 𝑤 = 𝑥) |
9 | | p0ex 5307 |
. . . . . . . 8
⊢ {∅}
∈ V |
10 | 9 | isseti 3447 |
. . . . . . 7
⊢
∃𝑧 𝑧 = {∅} |
11 | | 19.41v 1953 |
. . . . . . 7
⊢
(∃𝑧(𝑧 = {∅} ∧ 𝑤 = 𝑦) ↔ (∃𝑧 𝑧 = {∅} ∧ 𝑤 = 𝑦)) |
12 | 10, 11 | mpbiran 706 |
. . . . . 6
⊢
(∃𝑧(𝑧 = {∅} ∧ 𝑤 = 𝑦) ↔ 𝑤 = 𝑦) |
13 | 8, 12 | orbi12i 912 |
. . . . 5
⊢
((∃𝑧(𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ ∃𝑧(𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) |
14 | 2, 4, 13 | 3bitr3ri 302 |
. . . 4
⊢ ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) ↔ ∃𝑧((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)))) |
15 | 14 | abbii 2808 |
. . 3
⊢ {𝑤 ∣ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)} = {𝑤 ∣ ∃𝑧((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)))} |
16 | | dfpr2 4580 |
. . . . 5
⊢ {∅,
{∅}} = {𝑧 ∣
(𝑧 = ∅ ∨ 𝑧 = {∅})} |
17 | | pp0ex 5309 |
. . . . 5
⊢ {∅,
{∅}} ∈ V |
18 | 16, 17 | eqeltrri 2836 |
. . . 4
⊢ {𝑧 ∣ (𝑧 = ∅ ∨ 𝑧 = {∅})} ∈ V |
19 | | equequ2 2029 |
. . . . . . . 8
⊢ (𝑣 = 𝑥 → (𝑤 = 𝑣 ↔ 𝑤 = 𝑥)) |
20 | | 0inp0 5281 |
. . . . . . . 8
⊢ (𝑧 = ∅ → ¬ 𝑧 = {∅}) |
21 | 19, 20 | prlem1 1052 |
. . . . . . 7
⊢ (𝑣 = 𝑥 → (𝑧 = ∅ → (((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣))) |
22 | 21 | alrimdv 1932 |
. . . . . 6
⊢ (𝑣 = 𝑥 → (𝑧 = ∅ → ∀𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣))) |
23 | 22 | spimevw 1998 |
. . . . 5
⊢ (𝑧 = ∅ → ∃𝑣∀𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣)) |
24 | | orcom 867 |
. . . . . . . 8
⊢ (((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ ((𝑧 = {∅} ∧ 𝑤 = 𝑦) ∨ (𝑧 = ∅ ∧ 𝑤 = 𝑥))) |
25 | | equequ2 2029 |
. . . . . . . . 9
⊢ (𝑣 = 𝑦 → (𝑤 = 𝑣 ↔ 𝑤 = 𝑦)) |
26 | 20 | con2i 139 |
. . . . . . . . 9
⊢ (𝑧 = {∅} → ¬ 𝑧 = ∅) |
27 | 25, 26 | prlem1 1052 |
. . . . . . . 8
⊢ (𝑣 = 𝑦 → (𝑧 = {∅} → (((𝑧 = {∅} ∧ 𝑤 = 𝑦) ∨ (𝑧 = ∅ ∧ 𝑤 = 𝑥)) → 𝑤 = 𝑣))) |
28 | 24, 27 | syl7bi 254 |
. . . . . . 7
⊢ (𝑣 = 𝑦 → (𝑧 = {∅} → (((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣))) |
29 | 28 | alrimdv 1932 |
. . . . . 6
⊢ (𝑣 = 𝑦 → (𝑧 = {∅} → ∀𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣))) |
30 | 29 | spimevw 1998 |
. . . . 5
⊢ (𝑧 = {∅} → ∃𝑣∀𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣)) |
31 | 23, 30 | jaoi 854 |
. . . 4
⊢ ((𝑧 = ∅ ∨ 𝑧 = {∅}) →
∃𝑣∀𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣)) |
32 | 18, 31 | zfrep4 5220 |
. . 3
⊢ {𝑤 ∣ ∃𝑧((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)))} ∈ V |
33 | 15, 32 | eqeltri 2835 |
. 2
⊢ {𝑤 ∣ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)} ∈ V |
34 | 1, 33 | eqeltri 2835 |
1
⊢ {𝑥, 𝑦} ∈ V |