MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfpair Structured version   Visualization version   GIF version

Theorem zfpair 5299
Description: The Axiom of Pairing of Zermelo-Fraenkel set theory. Axiom 2 of [TakeutiZaring] p. 15. In some textbooks this is stated as a separate axiom; here we show it is redundant since it can be derived from the other axioms.

This theorem should not be referenced by any proof other than axprALT 5300. Instead, use zfpair2 5308 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.)

Assertion
Ref Expression
zfpair {𝑥, 𝑦} ∈ V

Proof of Theorem zfpair
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfpr2 4558 . 2 {𝑥, 𝑦} = {𝑤 ∣ (𝑤 = 𝑥𝑤 = 𝑦)}
2 19.43 1883 . . . . 5 (∃𝑧((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ (∃𝑧(𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ ∃𝑧(𝑧 = {∅} ∧ 𝑤 = 𝑦)))
3 prlem2 1051 . . . . . 6 (((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ ((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦))))
43exbii 1849 . . . . 5 (∃𝑧((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ ∃𝑧((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦))))
5 0ex 5187 . . . . . . . 8 ∅ ∈ V
65isseti 3483 . . . . . . 7 𝑧 𝑧 = ∅
7 19.41v 1950 . . . . . . 7 (∃𝑧(𝑧 = ∅ ∧ 𝑤 = 𝑥) ↔ (∃𝑧 𝑧 = ∅ ∧ 𝑤 = 𝑥))
86, 7mpbiran 708 . . . . . 6 (∃𝑧(𝑧 = ∅ ∧ 𝑤 = 𝑥) ↔ 𝑤 = 𝑥)
9 p0ex 5262 . . . . . . . 8 {∅} ∈ V
109isseti 3483 . . . . . . 7 𝑧 𝑧 = {∅}
11 19.41v 1950 . . . . . . 7 (∃𝑧(𝑧 = {∅} ∧ 𝑤 = 𝑦) ↔ (∃𝑧 𝑧 = {∅} ∧ 𝑤 = 𝑦))
1210, 11mpbiran 708 . . . . . 6 (∃𝑧(𝑧 = {∅} ∧ 𝑤 = 𝑦) ↔ 𝑤 = 𝑦)
138, 12orbi12i 912 . . . . 5 ((∃𝑧(𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ ∃𝑧(𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ (𝑤 = 𝑥𝑤 = 𝑦))
142, 4, 133bitr3ri 305 . . . 4 ((𝑤 = 𝑥𝑤 = 𝑦) ↔ ∃𝑧((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦))))
1514abbii 2887 . . 3 {𝑤 ∣ (𝑤 = 𝑥𝑤 = 𝑦)} = {𝑤 ∣ ∃𝑧((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)))}
16 dfpr2 4558 . . . . 5 {∅, {∅}} = {𝑧 ∣ (𝑧 = ∅ ∨ 𝑧 = {∅})}
17 pp0ex 5264 . . . . 5 {∅, {∅}} ∈ V
1816, 17eqeltrri 2911 . . . 4 {𝑧 ∣ (𝑧 = ∅ ∨ 𝑧 = {∅})} ∈ V
19 equequ2 2033 . . . . . . . 8 (𝑣 = 𝑥 → (𝑤 = 𝑣𝑤 = 𝑥))
20 0inp0 5236 . . . . . . . 8 (𝑧 = ∅ → ¬ 𝑧 = {∅})
2119, 20prlem1 1050 . . . . . . 7 (𝑣 = 𝑥 → (𝑧 = ∅ → (((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣)))
2221alrimdv 1930 . . . . . 6 (𝑣 = 𝑥 → (𝑧 = ∅ → ∀𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣)))
2322spimevw 2001 . . . . 5 (𝑧 = ∅ → ∃𝑣𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣))
24 orcom 867 . . . . . . . 8 (((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) ↔ ((𝑧 = {∅} ∧ 𝑤 = 𝑦) ∨ (𝑧 = ∅ ∧ 𝑤 = 𝑥)))
25 equequ2 2033 . . . . . . . . 9 (𝑣 = 𝑦 → (𝑤 = 𝑣𝑤 = 𝑦))
2620con2i 141 . . . . . . . . 9 (𝑧 = {∅} → ¬ 𝑧 = ∅)
2725, 26prlem1 1050 . . . . . . . 8 (𝑣 = 𝑦 → (𝑧 = {∅} → (((𝑧 = {∅} ∧ 𝑤 = 𝑦) ∨ (𝑧 = ∅ ∧ 𝑤 = 𝑥)) → 𝑤 = 𝑣)))
2824, 27syl7bi 258 . . . . . . 7 (𝑣 = 𝑦 → (𝑧 = {∅} → (((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣)))
2928alrimdv 1930 . . . . . 6 (𝑣 = 𝑦 → (𝑧 = {∅} → ∀𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣)))
3029spimevw 2001 . . . . 5 (𝑧 = {∅} → ∃𝑣𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣))
3123, 30jaoi 854 . . . 4 ((𝑧 = ∅ ∨ 𝑧 = {∅}) → ∃𝑣𝑤(((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑣))
3218, 31zfrep4 5176 . . 3 {𝑤 ∣ ∃𝑧((𝑧 = ∅ ∨ 𝑧 = {∅}) ∧ ((𝑧 = ∅ ∧ 𝑤 = 𝑥) ∨ (𝑧 = {∅} ∧ 𝑤 = 𝑦)))} ∈ V
3315, 32eqeltri 2910 . 2 {𝑤 ∣ (𝑤 = 𝑥𝑤 = 𝑦)} ∈ V
341, 33eqeltri 2910 1 {𝑥, 𝑦} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844  wal 1536   = wceq 1538  wex 1781  wcel 2114  {cab 2800  Vcvv 3469  c0 4265  {csn 4539  {cpr 4541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-v 3471  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-pw 4513  df-sn 4540  df-pr 4542
This theorem is referenced by:  axprALT  5300
  Copyright terms: Public domain W3C validator