Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralcom3OLD | Structured version Visualization version GIF version |
Description: Obsolete version of ralcom3 3097 as of 22-Dec-2024. (Contributed by NM, 22-Feb-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ralcom3OLD | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.04 90 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → 𝜑)) → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝜑))) | |
2 | 1 | ralimi2 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) → ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) |
3 | pm2.04 90 | . . 3 ⊢ ((𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝜑)) → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → 𝜑))) | |
4 | 3 | ralimi2 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑) → ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑)) |
5 | 2, 4 | impbii 208 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2104 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
This theorem depends on definitions: df-bi 206 df-ral 3063 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |