|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ralcom3OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of ralcom3 3097 as of 22-Dec-2024. (Contributed by NM, 22-Feb-2004.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| ralcom3OLD | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.04 90 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → 𝜑)) → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝜑))) | |
| 2 | 1 | ralimi2 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) → ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) | 
| 3 | pm2.04 90 | . . 3 ⊢ ((𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝜑)) → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → 𝜑))) | |
| 4 | 3 | ralimi2 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑) → ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑)) | 
| 5 | 2, 4 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ∀wral 3061 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 | 
| This theorem depends on definitions: df-bi 207 df-ral 3062 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |