| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimi2 | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004.) |
| Ref | Expression |
|---|---|
| ralimi2.1 | ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralimi2 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimi2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐵 → 𝜓)) | |
| 2 | 1 | alimi 1811 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) |
| 3 | df-ral 3053 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 4 | df-ral 3053 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3053 |
| This theorem is referenced by: ralimia 3071 ralcom3OLD 3088 tfi 7853 resixpfo 8955 omex 9662 kmlem1 10170 brdom5 10548 brdom4 10549 xrub 13333 pcmptcl 16916 itgeq2 25736 iblcnlem 25747 pntrsumbnd 27534 nmounbseqi 30763 nmounbseqiALT 30764 sumdmdi 32406 dmdbr4ati 32407 dmdbr6ati 32409 bnj110 34894 fiinfi 43564 |
| Copyright terms: Public domain | W3C validator |