MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimi2 Structured version   Visualization version   GIF version

Theorem ralimi2 3084
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004.)
Hypothesis
Ref Expression
ralimi2.1 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
Assertion
Ref Expression
ralimi2 (∀𝑥𝐴 𝜑 → ∀𝑥𝐵 𝜓)

Proof of Theorem ralimi2
StepHypRef Expression
1 ralimi2.1 . . 3 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
21alimi 1809 . 2 (∀𝑥(𝑥𝐴𝜑) → ∀𝑥(𝑥𝐵𝜓))
3 df-ral 3068 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
4 df-ral 3068 . 2 (∀𝑥𝐵 𝜓 ↔ ∀𝑥(𝑥𝐵𝜓))
52, 3, 43imtr4i 292 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wcel 2108  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-ral 3068
This theorem is referenced by:  ralimia  3086  ralcom3OLD  3104  tfi  7890  resixpfo  8994  omex  9712  kmlem1  10220  brdom5  10598  brdom4  10599  xrub  13374  pcmptcl  16938  itgeq2  25833  iblcnlem  25844  pntrsumbnd  27628  nmounbseqi  30809  nmounbseqiALT  30810  sumdmdi  32452  dmdbr4ati  32453  dmdbr6ati  32455  bnj110  34834  fiinfi  43535
  Copyright terms: Public domain W3C validator