MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimi2 Structured version   Visualization version   GIF version

Theorem ralimi2 3078
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004.)
Hypothesis
Ref Expression
ralimi2.1 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
Assertion
Ref Expression
ralimi2 (∀𝑥𝐴 𝜑 → ∀𝑥𝐵 𝜓)

Proof of Theorem ralimi2
StepHypRef Expression
1 ralimi2.1 . . 3 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
21alimi 1813 . 2 (∀𝑥(𝑥𝐴𝜑) → ∀𝑥(𝑥𝐵𝜓))
3 df-ral 3062 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
4 df-ral 3062 . 2 (∀𝑥𝐵 𝜓 ↔ ∀𝑥(𝑥𝐵𝜓))
52, 3, 43imtr4i 291 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wcel 2106  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811
This theorem depends on definitions:  df-bi 206  df-ral 3062
This theorem is referenced by:  ralimia  3080  ralcom3OLD  3098  tfi  7838  resixpfo  8926  omex  9634  kmlem1  10141  brdom5  10520  brdom4  10521  xrub  13287  pcmptcl  16820  itgeq2  25286  iblcnlem  25297  pntrsumbnd  27058  nmounbseqi  30017  nmounbseqiALT  30018  sumdmdi  31660  dmdbr4ati  31661  dmdbr6ati  31663  bnj110  33857  fiinfi  42309
  Copyright terms: Public domain W3C validator