Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralimi2 | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004.) |
Ref | Expression |
---|---|
ralimi2.1 | ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
ralimi2 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimi2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐵 → 𝜓)) | |
2 | 1 | alimi 1812 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) |
3 | df-ral 3062 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
4 | df-ral 3062 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) | |
5 | 2, 3, 4 | 3imtr4i 291 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2105 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
This theorem depends on definitions: df-bi 206 df-ral 3062 |
This theorem is referenced by: ralimia 3079 ralcom3OLD 3097 tfi 7745 resixpfo 8773 omex 9478 kmlem1 9985 brdom5 10364 brdom4 10365 xrub 13125 pcmptcl 16666 itgeq2 25022 iblcnlem 25033 pntrsumbnd 26794 nmounbseqi 29271 nmounbseqiALT 29272 sumdmdi 30914 dmdbr4ati 30915 dmdbr6ati 30917 bnj110 32973 fiinfi 41419 |
Copyright terms: Public domain | W3C validator |