| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimi2 | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004.) |
| Ref | Expression |
|---|---|
| ralimi2.1 | ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralimi2 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimi2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐵 → 𝜓)) | |
| 2 | 1 | alimi 1811 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) |
| 3 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 4 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) | |
| 5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: ralimia 3063 tfi 7786 resixpfo 8863 omex 9539 kmlem1 10045 brdom5 10423 brdom4 10424 xrub 13214 pcmptcl 16803 itgeq2 25677 iblcnlem 25688 pntrsumbnd 27475 nmounbseqi 30721 nmounbseqiALT 30722 sumdmdi 32364 dmdbr4ati 32365 dmdbr6ati 32367 bnj110 34825 fiinfi 43550 |
| Copyright terms: Public domain | W3C validator |