MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimi2 Structured version   Visualization version   GIF version

Theorem ralimi2 3069
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004.)
Hypothesis
Ref Expression
ralimi2.1 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
Assertion
Ref Expression
ralimi2 (∀𝑥𝐴 𝜑 → ∀𝑥𝐵 𝜓)

Proof of Theorem ralimi2
StepHypRef Expression
1 ralimi2.1 . . 3 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
21alimi 1811 . 2 (∀𝑥(𝑥𝐴𝜑) → ∀𝑥(𝑥𝐵𝜓))
3 df-ral 3053 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
4 df-ral 3053 . 2 (∀𝑥𝐵 𝜓 ↔ ∀𝑥(𝑥𝐵𝜓))
52, 3, 43imtr4i 292 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wcel 2109  wral 3052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ral 3053
This theorem is referenced by:  ralimia  3071  ralcom3OLD  3088  tfi  7853  resixpfo  8955  omex  9662  kmlem1  10170  brdom5  10548  brdom4  10549  xrub  13333  pcmptcl  16916  itgeq2  25736  iblcnlem  25747  pntrsumbnd  27534  nmounbseqi  30763  nmounbseqiALT  30764  sumdmdi  32406  dmdbr4ati  32407  dmdbr6ati  32409  bnj110  34894  fiinfi  43564
  Copyright terms: Public domain W3C validator