MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfral2 Structured version   Visualization version   GIF version

Theorem dfral2 3168
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) Allow shortening of rexnal 3169. (Revised by Wolf Lammen, 9-Dec-2019.)
Assertion
Ref Expression
dfral2 (∀𝑥𝐴 𝜑 ↔ ¬ ∃𝑥𝐴 ¬ 𝜑)

Proof of Theorem dfral2
StepHypRef Expression
1 notnotb 315 . . 3 (𝜑 ↔ ¬ ¬ 𝜑)
21ralbii 3092 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 ¬ ¬ 𝜑)
3 ralnex 3167 . 2 (∀𝑥𝐴 ¬ ¬ 𝜑 ↔ ¬ ∃𝑥𝐴 ¬ 𝜑)
42, 3bitri 274 1 (∀𝑥𝐴 𝜑 ↔ ¬ ∃𝑥𝐴 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wral 3064  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-ral 3069  df-rex 3070
This theorem is referenced by:  rexnal  3169  boxcutc  8729  infssuni  9110  ac6n  10241  indstr  12656  trfil3  23039  tglowdim2ln  27012  nmobndseqi  29141  stri  30619  hstri  30627  reprinfz1  32602  bnj1204  32992  imaeqsalv  33691  nosepon  33868  noinfbnd1lem4  33929  fvineqsneq  35583  poimirlem1  35778  n0elqs  36461
  Copyright terms: Public domain W3C validator