Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfral2 | Structured version Visualization version GIF version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) Allow shortening of rexnal 3165. (Revised by Wolf Lammen, 9-Dec-2019.) |
Ref | Expression |
---|---|
dfral2 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 314 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
2 | 1 | ralbii 3090 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ¬ ¬ 𝜑) |
3 | ralnex 3163 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 df-rex 3069 |
This theorem is referenced by: rexnal 3165 boxcutc 8687 infssuni 9040 ac6n 10172 indstr 12585 trfil3 22947 tglowdim2ln 26916 nmobndseqi 29042 stri 30520 hstri 30528 reprinfz1 32502 bnj1204 32892 imaeqsalv 33594 nosepon 33795 noinfbnd1lem4 33856 fvineqsneq 35510 poimirlem1 35705 n0elqs 36388 |
Copyright terms: Public domain | W3C validator |