MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfral2 Structured version   Visualization version   GIF version

Theorem dfral2 3097
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) Allow shortening of rexnal 3098. (Revised by Wolf Lammen, 9-Dec-2019.)
Assertion
Ref Expression
dfral2 (∀𝑥𝐴 𝜑 ↔ ¬ ∃𝑥𝐴 ¬ 𝜑)

Proof of Theorem dfral2
StepHypRef Expression
1 notnotb 314 . . 3 (𝜑 ↔ ¬ ¬ 𝜑)
21ralbii 3091 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 ¬ ¬ 𝜑)
3 ralnex 3070 . 2 (∀𝑥𝐴 ¬ ¬ 𝜑 ↔ ¬ ∃𝑥𝐴 ¬ 𝜑)
42, 3bitri 274 1 (∀𝑥𝐴 𝜑 ↔ ¬ ∃𝑥𝐴 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wral 3059  wrex 3068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1780  df-ral 3060  df-rex 3069
This theorem is referenced by:  rexnal  3098  imaeqsalv  7363  boxcutc  8937  infssuni  9345  ac6n  10482  indstr  12904  trfil3  23612  nosepon  27404  noinfbnd1lem4  27465  cuteq1  27571  tglowdim2ln  28169  nmobndseqi  30299  stri  31777  hstri  31785  reprinfz1  33932  bnj1204  34321  fvineqsneq  36596  poimirlem1  36792  n0elqs  37498
  Copyright terms: Public domain W3C validator