![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfral2 | Structured version Visualization version GIF version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) Allow shortening of rexnal 3092. (Revised by Wolf Lammen, 9-Dec-2019.) |
Ref | Expression |
---|---|
dfral2 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
2 | 1 | ralbii 3085 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ¬ ¬ 𝜑) |
3 | ralnex 3064 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wral 3053 ∃wrex 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-ral 3054 df-rex 3063 |
This theorem is referenced by: rexnal 3092 imaeqsalv 7353 boxcutc 8931 infssuni 9339 ac6n 10476 indstr 12897 trfil3 23714 nosepon 27514 noinfbnd1lem4 27575 cuteq1 27682 tglowdim2ln 28371 nmobndseqi 30501 stri 31979 hstri 31987 reprinfz1 34123 bnj1204 34512 fvineqsneq 36783 poimirlem1 36979 n0elqs 37685 |
Copyright terms: Public domain | W3C validator |