MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfral2 Structured version   Visualization version   GIF version

Theorem dfral2 3083
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) Allow shortening of rexnal 3084. (Revised by Wolf Lammen, 9-Dec-2019.)
Assertion
Ref Expression
dfral2 (∀𝑥𝐴 𝜑 ↔ ¬ ∃𝑥𝐴 ¬ 𝜑)

Proof of Theorem dfral2
StepHypRef Expression
1 notnotb 315 . . 3 (𝜑 ↔ ¬ ¬ 𝜑)
21ralbii 3078 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 ¬ ¬ 𝜑)
3 ralnex 3058 . 2 (∀𝑥𝐴 ¬ ¬ 𝜑 ↔ ¬ ∃𝑥𝐴 ¬ 𝜑)
42, 3bitri 275 1 (∀𝑥𝐴 𝜑 ↔ ¬ ∃𝑥𝐴 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wral 3047  wrex 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-ral 3048  df-rex 3057
This theorem is referenced by:  rexnal  3084  imaeqsalvOLD  7293  boxcutc  8860  infssuni  9225  ac6n  10371  indstr  12809  trfil3  23798  nosepon  27599  noinfbnd1lem4  27660  cuteq1  27773  tglowdim2ln  28624  nmobndseqi  30751  stri  32229  hstri  32237  reprinfz1  34627  bnj1204  35016  onvf1odlem4  35142  fvineqsneq  37446  poimirlem1  37661  n0elqs  38360
  Copyright terms: Public domain W3C validator