MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfral2 Structured version   Visualization version   GIF version

Theorem dfral2 3082
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) Allow shortening of rexnal 3083. (Revised by Wolf Lammen, 9-Dec-2019.)
Assertion
Ref Expression
dfral2 (∀𝑥𝐴 𝜑 ↔ ¬ ∃𝑥𝐴 ¬ 𝜑)

Proof of Theorem dfral2
StepHypRef Expression
1 notnotb 315 . . 3 (𝜑 ↔ ¬ ¬ 𝜑)
21ralbii 3076 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 ¬ ¬ 𝜑)
3 ralnex 3056 . 2 (∀𝑥𝐴 ¬ ¬ 𝜑 ↔ ¬ ∃𝑥𝐴 ¬ 𝜑)
42, 3bitri 275 1 (∀𝑥𝐴 𝜑 ↔ ¬ ∃𝑥𝐴 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wral 3045  wrex 3054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-ral 3046  df-rex 3055
This theorem is referenced by:  rexnal  3083  imaeqsalvOLD  7342  boxcutc  8917  infssuni  9304  ac6n  10445  indstr  12882  trfil3  23782  nosepon  27584  noinfbnd1lem4  27645  cuteq1  27753  tglowdim2ln  28585  nmobndseqi  30715  stri  32193  hstri  32201  reprinfz1  34620  bnj1204  35009  onvf1odlem4  35100  fvineqsneq  37407  poimirlem1  37622  n0elqs  38321
  Copyright terms: Public domain W3C validator