| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfral2 | Structured version Visualization version GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) Allow shortening of rexnal 3081. (Revised by Wolf Lammen, 9-Dec-2019.) |
| Ref | Expression |
|---|---|
| dfral2 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 2 | 1 | ralbii 3075 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ¬ ¬ 𝜑) |
| 3 | ralnex 3055 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: rexnal 3081 imaeqsalvOLD 7301 boxcutc 8868 infssuni 9236 ac6n 10379 indstr 12817 trfil3 23773 nosepon 27575 noinfbnd1lem4 27636 cuteq1 27748 tglowdim2ln 28596 nmobndseqi 30723 stri 32201 hstri 32209 reprinfz1 34590 bnj1204 34979 onvf1odlem4 35079 fvineqsneq 37386 poimirlem1 37601 n0elqs 38300 |
| Copyright terms: Public domain | W3C validator |