![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfral2 | Structured version Visualization version GIF version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) Allow shortening of rexnal 3098. (Revised by Wolf Lammen, 9-Dec-2019.) |
Ref | Expression |
---|---|
dfral2 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 314 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
2 | 1 | ralbii 3091 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ¬ ¬ 𝜑) |
3 | ralnex 3070 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wral 3059 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-ral 3060 df-rex 3069 |
This theorem is referenced by: rexnal 3098 imaeqsalv 7363 boxcutc 8937 infssuni 9345 ac6n 10482 indstr 12904 trfil3 23612 nosepon 27404 noinfbnd1lem4 27465 cuteq1 27571 tglowdim2ln 28169 nmobndseqi 30299 stri 31777 hstri 31785 reprinfz1 33932 bnj1204 34321 fvineqsneq 36596 poimirlem1 36792 n0elqs 37498 |
Copyright terms: Public domain | W3C validator |