| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfral2 | Structured version Visualization version GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) Allow shortening of rexnal 3082. (Revised by Wolf Lammen, 9-Dec-2019.) |
| Ref | Expression |
|---|---|
| dfral2 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 2 | 1 | ralbii 3075 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ¬ ¬ 𝜑) |
| 3 | ralnex 3055 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: rexnal 3082 imaeqsalvOLD 7321 boxcutc 8891 infssuni 9273 ac6n 10414 indstr 12851 trfil3 23751 nosepon 27553 noinfbnd1lem4 27614 cuteq1 27722 tglowdim2ln 28554 nmobndseqi 30681 stri 32159 hstri 32167 reprinfz1 34586 bnj1204 34975 onvf1odlem4 35066 fvineqsneq 37373 poimirlem1 37588 n0elqs 38287 |
| Copyright terms: Public domain | W3C validator |