| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralcom3 | Structured version Visualization version GIF version | ||
| Description: A commutation law for restricted universal quantifiers that swaps the domains of the restriction. (Contributed by NM, 22-Feb-2004.) (Proof shortened by Wolf Lammen, 22-Dec-2024.) |
| Ref | Expression |
|---|---|
| ralcom3 | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2.04 387 | . 2 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝜑))) | |
| 2 | 1 | ralbii2 3077 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-ral 3051 |
| This theorem is referenced by: tgss2 22941 ist1-3 23303 isreg2 23331 |
| Copyright terms: Public domain | W3C validator |