Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralcom3 | Structured version Visualization version GIF version |
Description: A commutation law for restricted universal quantifiers that swaps the domains of the restriction. (Contributed by NM, 22-Feb-2004.) (Proof shortened by Wolf Lammen, 22-Dec-2024.) |
Ref | Expression |
---|---|
ralcom3 | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2.04 389 | . 2 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝜑))) | |
2 | 1 | ralbii2 3090 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-ral 3063 |
This theorem is referenced by: tgss2 22250 ist1-3 22613 isreg2 22641 |
Copyright terms: Public domain | W3C validator |