MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralcom3 Structured version   Visualization version   GIF version

Theorem ralcom3 3266
Description: A commutation law for restricted universal quantifiers that swaps the domains of the restriction. (Contributed by NM, 22-Feb-2004.)
Assertion
Ref Expression
ralcom3 (∀𝑥𝐴 (𝑥𝐵𝜑) ↔ ∀𝑥𝐵 (𝑥𝐴𝜑))

Proof of Theorem ralcom3
StepHypRef Expression
1 pm2.04 90 . . 3 ((𝑥𝐴 → (𝑥𝐵𝜑)) → (𝑥𝐵 → (𝑥𝐴𝜑)))
21ralimi2 3072 . 2 (∀𝑥𝐴 (𝑥𝐵𝜑) → ∀𝑥𝐵 (𝑥𝐴𝜑))
3 pm2.04 90 . . 3 ((𝑥𝐵 → (𝑥𝐴𝜑)) → (𝑥𝐴 → (𝑥𝐵𝜑)))
43ralimi2 3072 . 2 (∀𝑥𝐵 (𝑥𝐴𝜑) → ∀𝑥𝐴 (𝑥𝐵𝜑))
52, 4impbii 212 1 (∀𝑥𝐴 (𝑥𝐵𝜑) ↔ ∀𝑥𝐵 (𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2113  wral 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816
This theorem depends on definitions:  df-bi 210  df-ral 3058
This theorem is referenced by:  tgss2  21731  ist1-3  22093  isreg2  22121
  Copyright terms: Public domain W3C validator