| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimd4v | Structured version Visualization version GIF version | ||
| Description: Deduction quadrupally quantifying both antecedent and consequent. (Contributed by Scott Fenton, 2-Mar-2025.) Reduce DV conditions. (Revised by Eric Schmidt, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| ralimd4v.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimd4v | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimd4v.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | ralimdvv 3194 | . 2 ⊢ (𝜑 → (∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜓 → ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜒)) |
| 3 | 2 | ralimdvv 3194 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3053 |
| This theorem is referenced by: ralimd6v 3198 |
| Copyright terms: Public domain | W3C validator |