MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimd4v Structured version   Visualization version   GIF version

Theorem ralimd4v 3196
Description: Deduction quadrupally quantifying both antecedent and consequent. (Contributed by Scott Fenton, 2-Mar-2025.) Reduce DV conditions. (Revised by Eric Schmidt, 18-Nov-2025.)
Hypothesis
Ref Expression
ralimd4v.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ralimd4v (𝜑 → (∀𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜓 → ∀𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧   𝜑,𝑤
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤)   𝜒(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem ralimd4v
StepHypRef Expression
1 ralimd4v.1 . . 3 (𝜑 → (𝜓𝜒))
21ralimdvv 3194 . 2 (𝜑 → (∀𝑧𝐶𝑤𝐷 𝜓 → ∀𝑧𝐶𝑤𝐷 𝜒))
32ralimdvv 3194 1 (𝜑 → (∀𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜓 → ∀𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 3052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ral 3053
This theorem is referenced by:  ralimd6v  3198
  Copyright terms: Public domain W3C validator