MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimdvv Structured version   Visualization version   GIF version

Theorem ralimdvv 3194
Description: Deduction doubly quantifying both antecedent and consequent. (Contributed by Scott Fenton, 2-Mar-2025.) Shorten and reduce DV conditions. (Revised by Eric Schmidt, 18-Nov-2025.)
Hypothesis
Ref Expression
ralimdvv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ralimdvv (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem ralimdvv
StepHypRef Expression
1 ralimdvv.1 . . 3 (𝜑 → (𝜓𝜒))
21ralimdv 3155 . 2 (𝜑 → (∀𝑦𝐵 𝜓 → ∀𝑦𝐵 𝜒))
32ralimdv 3155 1 (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 3052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ral 3053
This theorem is referenced by:  ralimd4v  3196  ralimd6v  3198
  Copyright terms: Public domain W3C validator