|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ralimd6v | Structured version Visualization version GIF version | ||
| Description: Deduction sextupally quantifying both antecedent and consequent. (Contributed by Scott Fenton, 5-Mar-2025.) | 
| Ref | Expression | 
|---|---|
| ralim6dv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| ralimd6v | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralim6dv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | ralimdvv 3207 | . 2 ⊢ (𝜑 → (∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜓 → ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜒)) | 
| 3 | 2 | ralimd4v 3208 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wral 3060 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3061 | 
| This theorem is referenced by: mulsproplem13 28155 mulsproplem14 28156 | 
| Copyright terms: Public domain | W3C validator |