MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimdvvOLD Structured version   Visualization version   GIF version

Theorem ralimdvvOLD 3195
Description: Obsolete version of ralimdvv 3194 as of 18-Nov-2025. (Contributed by Scott Fenton, 2-Mar-2025.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
ralimdvvOLD.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ralimdvvOLD (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝜑
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem ralimdvvOLD
StepHypRef Expression
1 ralimdvvOLD.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 480 . 2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
32ralimdvva 3192 1 (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ral 3053
This theorem is referenced by:  ralimd4vOLD  3197  ralimd6vOLD  3199
  Copyright terms: Public domain W3C validator